Learning from Vernacular and Integrating Retrofitting Techniques to Enhance Thermal Comfort in Residential Buildings: Insights from Tiruchirapalli, India

K. Marliya¹ & K..Thirumaran Kesavaperumal²

¹Research Scholar, ²Professor
Department of Architecture
National Institute of Technology, Tiruchirapalli, India.
ar.marliya@gmail.com; ktm@nitt.edu

| Received | Accepted | Published |
| 05.07.2023 | 18.12.2023 | 31.12.2023

https://doi.org/10.61275/ISVSej-2023-10-12-11

Abstract

This research investigates the impact of integrated passive design techniques on thermal comfort in a ground-floor residence in Tiruchirapalli, India. The study addresses thermal comfort challenges in order to bridge the gap between theory and practice, providing insights for decision-makers, architects, and urban planners.

It employs quantitative methods. The research integrates pre- and post-retrofit thermal comfort hour analyses to quantify increases after implementing passive design measures. It notes the benefits, such as reduced energy consumption and greenhouse gas emissions.

Findings reveal a nuanced understanding of passive design effectiveness, contributing to academic discussions and offering actionable insights for industry practitioners. The analysis of 20 simulations provides valuable insights into the thermal performance of distinct spaces within the residence under various ventilation conditions. While the study focuses on a specific residence, it contributes to the broader discourse on sustainable design practices, offering guidance for creating energy-efficient and comfortable living environments, albeit with limitations. The research underscores the critical role of natural ventilation in achieving thermal comfort and emphasizes the need for thoughtful ventilation strategies in different spaces. The findings provide a foundation for further exploration of passive design strategies and their applicability in diverse residential settings.

Keywords: Passive design techniques, Building Retrofitting, Warn humid climate, Thermal Comfort, Residence

Introduction

The growing interest in sustainable construction has spurred a focus on passive design techniques as a means to enhance thermal comfort and mitigate the environmental impact of active cooling systems, as noted by (Zune et al., 2020). This study explores the possibilities of integrating passive design strategies into conventional buildings.

Wang and Adeli (2014) show that traditional buildings rely on energy-intensive active cooling systems, leading to less energy consumption and greenhouse gas emissions. Interestingly, Tiruchirapalli's vernacular architecture has been acknowledged for providing comfortable living environments without artificial cooling. Indeed, this provides a foundation for investigating the efficacy of retrofitting conventional structures with passive design techniques to enhance occupant comfort and promote environmentally sustainable practices. This research raises the question, whether retrofitting with passive design techniques, inspired by Tiruchirapalli's architectural traditions, could positively influence the thermal comfort hours experienced by occupants. Thus, this study aims to contribute to enhancing the thermal performance of residences in Tiruchirapalli through passive techniques.

The research objectives are as follows.

- 1. To ascertain the performance of a residence in its existing state.
- 2. To identify the prevalent passive design techniques specific to the Tiruchirapalli region.
- 3. To apply these techniques to retrofit the selected residence, identifying the design that optimizes thermal comfort hours.

Theoretical Framework

According to Ličina et al. (2018), thermal comfort is "the state of mind that communicates satisfaction within the thermal environment," often assessed subjectively. Thermal acceptability refers to the mental state expressing approval of the environmental thermal conditions, aligning with Berglund's concept. Thermal sensation is defined as an individual's mental state that evaluates the thermal environment. Specifically, it involves the conscious interpretation of sensory data arising from exposure to a particular thermal condition (Chan et al., 2017).

de Dear et al. (2013) argue that human thermal perception is influenced by the psychophysical dynamics of thermal pleasure. Höppe (2002) and Luo et al. (2018) also suggest that people with perceived control tend to report more positive comfort perceptions. They also indicate the role of psychological aspects in the perception of the thermal environments (Wang et al., 2018).

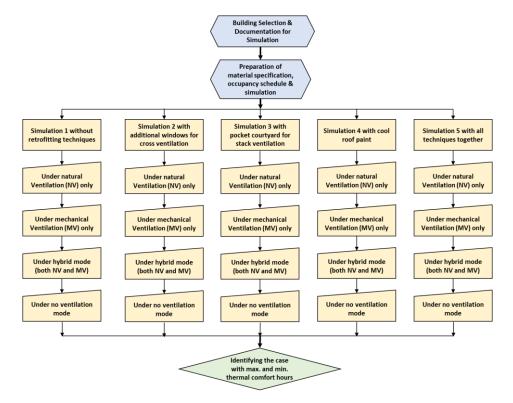
According to Ca ndido et al. (2010), if we accept that thermal environments slightly warmer than preferred or neutral can still be acceptable, the introduction of airflow with higher velocities into such environments may be desirable. Acceptability related to higher velocities remove sensible and latent heat from the body, re-establishing body temperatures to a comfortable level.

Review of Literature

literature has examined many aspects of thermal comfort including passive design techniques in warm and humid climates. Notably, there has been a recent interest in context-driven strategies for achieving thermal comfort in traditional buildings (Karthikeyan & Kumaraguruparan, 2023). Effective passive design strategies, such as maximizing airflow for natural ventilation in warm and humid tropical climates, have also been emphasized (Dewi and Antaryama, 2017). However, as Ahmed et al. (2014) point out the selection of passive thermal design strategies is heavily influenced by local climatic conditions. Studies suggest that orienting buildings at specific angles to the prevailing wind direction significantly improves thermal comfort and ventilation in warm humid climates. Indeed, the occupancy rate for a building can indicate sprawl in the community (Sarwate, Soni and Acharya, 2023)

Considering the impact of relative humidity on thermal comfort is vital in warm and humid climates. Research indicates that higher relative humidity levels can affect occupants' responses to humid conditions in warm environments. The applicability of thermal neutrality equations to residents' thermal responses in tropical warm-humid urban environments underscores the need to understand specific thermal comfort needs in such climates.

Baruti et al. (2019) reviewing studies on outdoor thermal comfort in warm humid climates emphasizes the challenges posed by informal urban fabric, highlighting the necessity for tailored passive design solutions. Uzakbayev et al. (2023) points out that field surveys help to analyse the role of environmental features. Moreover, Basuki, Antaryama and Samodra, (2022) demonstrate the recognized applicability of direct evaporative cooling as a passive design strategy for improving building thermal conditions in hot-dry climates. They argue that they add to the array of potential solutions.


Muller and O'Gorman (2011), look at the issue of the pursuit of maximizing thermal comfort hours through passive design. They argue that considering the impact of climate change on surface and column water vapor is crucial. They offer significant insights into the design of passive strategies that mitigate the effects of climate change on thermal comfort can be gained by understanding the factors governing the calculated rates of change of water vapor in simulations of global warming scenarios.

Studies on the thermal comfort of people in hot and humid areas confirm the applicability of certain passive design models from warm climates with specific thermal histories. Brager, Zhang and Arens (2015) however acknowledge the limitations of these in certain contexts. Crawley et al. (2008) show that the development of bioclimatic charts for passive building design in warm climates is necessary to utilize passive strategies tailored to the specific climatic conditions of the region. They demonstrate the significance of building performance simulations and support the arguments of Sarwate, Soni & Acharya (2023) who point out that the occupancy rate for a building indicate the sprawl in the community. These research however, are inadequate and insufficient to fully understand the issues of thermal comfort,

Research Methodology

This research examines Tiruchirapalli as a case study due to its notable indigenous architecture. The research technique involves a practical implementation of passive design techniques in retrofitting a residential structure in Tiruchirapalli: the case study. It thus selects an existing residence there, documents its details, and utilizes simulation software to assess thermal comfort hours before and after retrofitting with passive design techniques. It focuses on comparing data to evaluate the potential for creating more sustainable living spaces.

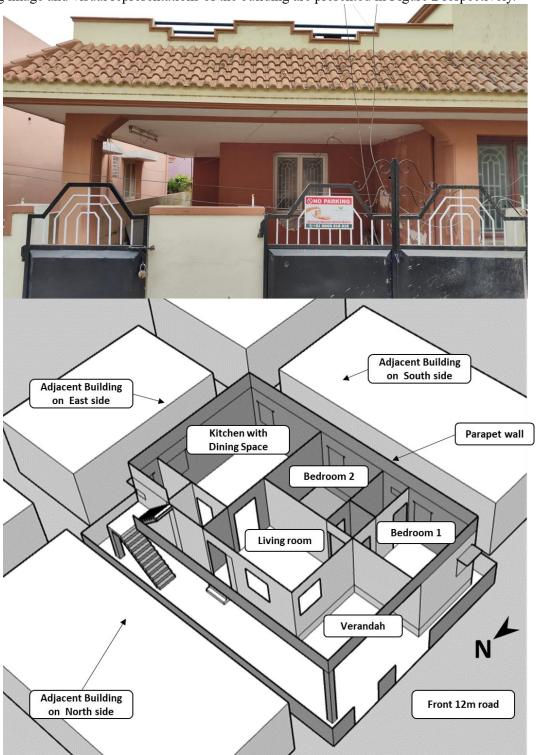

Methodologically, this research draws on building performance simulation, as highlighted by Crawley et al. (2008). It recognizes the importance of accurate modeling and analysis in evaluating the impact of design interventions. The use of the Climate Studio plugin in Rhino aligned with these principles, provide a robust simulation platform to assess thermal comfort hours before and after retrofitting. The research process adopted is depicted in the Figure 1.

Fig. 1: Research Methodology Flowchart Source: Author

The Case Study

The selected dwelling exists in Tiruchirapalli. It encompasses 1200 sq. ft., comprised of two bedrooms. It is oriented towards the East. The main entrance of the residence opens onto a front road of 12m, while the adjacent structures are positioned 2 meters away from the side exterior walls. The building image and visual representations of the building are presented in Figure 2 respectively.

Fig. 2: Building Model created in Climate Studio software Source: Author

The occupants of the residence are a family of 3 people which includes a mother, father and a daughter. Table 1 outlines the indoor air temperature thresholds deemed acceptable according to the IMAC model for warm humid climate.

Table 1: Acceptable Indoor Temperature according to IMAC model for warm humid climate Source: Author

Acceptable	Acceptable Indoor Temperature according by IMAC for warm humid climate					
Month	Min. Temperature	Max. Temperature in degree Celsius				
	in degree Celcius					
Jan	24.27	29.03				
Feb	24.81	29.57				
Mar	26.04	30.8				
Apr	27.42	32.18				
May	27.67	32.43				
Jun	27.36	32.12				
Jul	27.34	32.1				
Aug	27.37	32.13				
Sep	27.03	31.79				
Oct	26.17	30.93				
Nov	25.41	30.17				
Dec	24.75	29.51				

A detailed type of breakdown as mentioned by (Yeretzian, A and Karam, 2023) of occupancy schedule specified for each space within the study residence is outlined in Table 2. The initial simulation involves assessing the building's thermal performance under the influence of the IMAC comfort bandwidth, utilizing the Climate Studio software plugin.

Table 2: Occupancy Schedule Source: Author

Rooms	Occupancy time of the day	Number of	Activity	Equipment (W)	Lighting (W/m ²)
	6am-7am	Occupants	Mild Activity	Tv & Fan	
	7am – 8am	3	Mild Activity	Tv & Fan	
	8am – 11am	1	Serene	Tv & Fan	-
	1pm – 2pm	1	Serene	Tv & Fan	
Living Room	5pm – 7pm	2	Serene	Tv & Fan	1 Fluorescent Light
	7pm – 10pm	3	Serene	Tv & Fan	1 Fluorescent Light
	2pm – 4pm	1	Sleep	Fan	-
Bedroom	6pm – 10pm	1	Frequent Visits	Fan	1 Fluorescent Light
	10pm – 5am	2	Sleep	Fan	1 zero Watts Bulb
Dada an O	6pm – 10pm	1	Frequent Visits	Fan	1 Fluorescent Light
Bedroom 2	10pm – 5am	1	Sleep	Fan	1 zero Watts Bulb
	4:30am – 7:30am	1	Cooking	Fridge & Kettle	1 Fluorescent Light
Kitchen &	11am – 12:30pm	1	Cooking	Fridge & Kettle	u
Dinning	5pm – 6pm	1	Cooking	Fridge & Kettle	и
	7pm – 8:30pm	1	Cooking	Fridge & Kettle	и

Based on the occupant's activities, equipment and lighting, the data considered for the simulation is given in Table 3.

Table 3: Building Simulation Attributes for the residence

Source: Author

Casas	Area (m2)	Air Changes	per hour	EDD (M/m2)	LPD	No of Occ.	Ppl Den
Space	Area (m2)	As per NBC	Taken	EPD (W/m2)	(W/m2)	(P)	(P / m2)
Living Room	14.49	3 to 6	5	8.63	2.76	3	0.21
Bedroom Centre	9.29	2 to 4	3	8.07	5.92	1	0.11
Bedroom Corner	9.29	2 10 4	J	8.07	5.92	2	0.22
Toilet	2.23	6 to 10	8	-	13.45	3	1.35
Kitchen	17.84	6 Min	6	112.11	2.24	1	0.06
Store Room	2.23	6 Min	6	-	6.73	1	0.45
Exterior Toilet	2.23	6 to 10	8	-	13.45	3	1.35

Following this initial simulation, three passive design retrofitting strategies are implemented. These strategies include enabling possible cross ventilation, introducing stack ventilation through a modest ceiling opening, and incorporating cool roof paints for the terrace. Subsequently, the building model undergoes simulations to evaluate its thermal performance in light of these design interventions. In total, 20 simulations have been performed under different scenarios as given in Table 4.

Table 4: Details of the various building simulations Source: Author

Different Retrofitting Methods	Different conditions of Natural Ventilation (NV) and Mechanical Ventilation (MV)					
Simulation 1 (before retrofitting)	With only Natural Ventilation (NV)	With only Mechanical Ventilation (MV) and doors, windows closed	With both Natural and Mechanical ventilation with doors, windows open	With No mechanical ventilation and doors, windows closed		
Simulation 2 (after retrofitting with additional windows for cross ventilation)	With only Natural Ventilation (NV)	With only Mechanical Ventilation (MV) and doors, windows closed	With both Natural and Mechanical ventilation with doors, windows open	With No mechanical ventilation and doors, windows closed		
Simulation 3 (after retrofitting with additional pocket courtyard for stack ventilation)	With only Natural Ventilation (NV)	With only Mechanical Ventilation (MV) and doors, windows closed	With both Natural and Mechanical ventilation with doors, windows open	With No mechanical ventilation and doors, windows closed		
Simulation 4 (after adding cool roof paint)	With only Natural Ventilation (NV)	With only Mechanical Ventilation (MV) and doors, windows closed	With both Natural and Mechanical ventilation with doors, windows open	With No mechanical ventilation and doors, windows closed		
Simulation 5 (An addition of windows, pocket courtyard and cool roof paint to the present condition)	With only Natural Ventilation (NV)	With only Mechanical Ventilation (MV) and doors, windows closed	With both Natural and Mechanical ventilation with doors, windows open	With No mechanical ventilation and doors, windows closed		

The crux of the research lies in the comparative analysis of thermal comfort hours between the building's initial state and its retrofitted condition. This comparative study identifies the scenario that provides maximum thermal comfort for the occupants. By scrutinizing the impact of passive design modifications on thermal performance, this research contributes valuable insights into the enhancement of building sustainability and occupant comfort.

Results and the Discussion

The simulations were carried out for different ventilation situations as mentioned from Table 5 to 24. The thermal comfort hours are mentioned in these tables annually. The maximum thermal comfort hours are formatted in blue and the minimum thermal comfort hours are formatted in red.

Table 5: Before retrofitting simulation with hybrid ventilation

Source: Author

Simulation	Simulation 1 - Windows and Doors open / Mechanical ventilation On							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	391	329	204	301	306			
Feb	312	286	140	253	248			
Mar	237	239	114	204	199			
Apr	215	214	102	183	179			
May	215	232	120	185	188			
Jun	275	271	139	234	230			
Jul	365	303	181	295	286			
Aug	314	274	187	239	254			
Sep	354	292	208	262	279			
Oct	238	219	150	189	199			
Nov	256	222	184	196	215			
Dec	315	244	215	227	250			
Total	3487	3125	1944	2768	2831			

From the simulations 1 to 20, one can understand that, Kitchen has the least thermal comfort hours during the months of February to June.

Table 6: Before retrofitting simulation with mechanical ventilation only Source: Author

Simulatio	Simulation 1 - Windows and Doors Closed / Mech Vent On						
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average		
Jan	385	330	203	303	212		
Feb	273	288	140	238	166		
Mar	176	198	116	189	123		
Apr	168	187	102	183	117		
May	211	230	120	186	135		
Jun	269	276	133	232	162		
Jul	371	310	178	296	202		
Aug	323	281	188	248	183		
Sep	358	295	207	269	198		
Oct	209	204	148	190	135		

Nov	255	231	186	195	154
Dec	334	260	227	242	186
Total	3332	3090	1948	2771	2785

Table 7: Before retrofitting simulation with no ventilation mode Source: Author

Simulatio	Simulation 1 - Windows and Doors Closed / Mechanical ventilation turned off							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	385	330	198	310	213			
Feb	262	285	135	238	162			
Mar	168	192	115	191	120			
Apr	154	180	98	181	112			
May	205	223	115	188	132			
Jun	265	274	131	232	160			
Jul	373	312	177	296	203			
Aug	323	280	185	246	182			
Sep	359	298	207	270	199			
Oct	199	204	149	190	133			
Nov	250	232	188	198	154			
Dec	336	261	229	249	188			
Total	3279	3071	1927	2789	2767			

Table 8: Before retrofitting simulation with only natural ventilation. Source: Author

Simulatio	Simulation 1 - Windows and Doors Open / Mechanical ventilation turned off							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	390	330	244	305	220			
Feb	313	291	169	257	181			
Mar	241	239	145	197	146			
Apr	221	217	134	188	137			
May	215	230	146	185	139			
Jun	265	271	158	228	164			
Jul	366	302	199	294	203			
Aug	315	270	196	238	180			
Sep	353	291	212	264	196			
Oct	239	222	169	194	147			
Nov	256	221	201	189	154			
Dec	335	259	255	242	191			
Total	3509	3143	2228	2781	2815			

Table 9: Retrofitting with additional windows for cross ventilation with only natural ventilation. Source: Author

Simulation	Simulation 2 - Windows and Doors Open / Mechanical ventilation turned off							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	390	330	244	306	221			
Feb	313	288	168	248	179			
Mar	235	233	142	193	143			
Apr	217	213	131	181	134			
May	207	212	141	180	133			
Jun	261	253	155	223	159			
Jul	367	306	195	290	203			
Aug	310	274	193	234	178			
Sep	354	293	208	260	196			
Oct	238	216	166	189	144			
Nov	254	219	202	190	153			
Dec	335	260	254	245	191			
Total	3481	3097	2199	2739	2879			

Table 10: Retrofitting with additional windows for cross ventilation with hybrid ventilation. Source: Author

Simulation	Simulation 2 - Windows and Doors open / Mechanical ventilation On						
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average		
Jan	391	329	246	302	220		
Feb	313	290	169	250	179		
Mar	239	236	143	194	145		
Apr	219	215	131	183	135		
May	215	229	141	181	138		
Jun	267	270	156	224	163		
Jul	365	302	195	293	202		
Aug	315	270	195	236	179		
Sep	353	291	209	259	195		
Oct	239	220	166	191	146		
Nov	255	218	200	191	153		
Dec	333	258	255	241	190		
Total	3504	3128	2206	2745	2896		

Table 11: Retrofitting with additional windows for cross ventilation with mechanical ventilation only Source: Author

Simulation	Simulation 2 - Windows and Doors Closed / Mech Vent On							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	385	330	204	303	213			
Feb	272	283	134	230	162			
Mar	176	197	114	186	122			
Apr	168	185	102	179	116			
May	211	223	120	184	133			
Jun	268	275	132	228	160			

Jul	372	311	174	294	202
Aug	322	279	185	243	181
Sep	358	296	204	266	197
Oct	208	203	149	189	134
Nov	255	230	186	192	153
Dec	334	262	228	244	187
Total	3329	3074	1932	2738	2768

Table 12: Retrofitting with additional windows for cross ventilation with no ventilation Source: Author

Simulatio	Simulation 2 - Windows and Doors Closed / Mechanical ventilation turned off								
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average				
Jan	386	330	200	308	213				
Feb	261	278	131	228	159				
Mar	157	180	113	186	115				
Apr	130	160	96	174	103				
May	188	198	111	180	123				
Jun	247	254	130	224	152				
Jul	372	315	174	290	202				
Aug	316	284	184	240	181				
Sep	358	301	199	267	197				
Oct	194	195	149	188	131				
Nov	248	230	187	195	153				
Dec	336	263	228	252	189				
Total	3193	2988	1902	2732	2704				

Table 13: Retrofitting simulation with introducing pocket courtyard for stack ventilation with only natural ventilation

Source: Author

Simulation	Simulation 3 - Windows and Doors Open / Mechanical ventilation turned off								
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average				
Jan	390	330	244	304	220				
Feb	313	288	168	250	179				
Mar	236	233	143	195	144				
Apr	217	213	130	181	133				
May	207	213	139	180	133				
Jun	260	255	155	222	159				
Jul	367	306	194	288	202				
Aug	311	274	192	234	178				
Sep	353	293	208	261	196				
Oct	238	217	166	186	144				
Nov	254	219	201	189	153				
Dec	335	260	255	244	191				
Total	3481	3101	2195	2734	2878				

Table 14: Retrofitting simulation with introducing pocket courtyard for stack ventilation with no ventilation. Source: Author

Simulati	Simulation 3 - Windows and Doors Closed / Mechanical ventilation turned off							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	385	330	198	310	213			
Feb	262	285	135	238	162			
Mar	168	192	115	191	120			
Apr	154	180	98	181	112			
May	205	223	115	188	132			
Jun	265	274	131	232	160			
Jul	373	312	177	296	203			
Aug	323	280	185	246	182			
Sep	359	298	207	270	199			
Oct	199	204	149	190	133			
Nov	250	232	188	198	154			
Dec	336	261	229	249	188			
Total	3279	3071	1927	2789	2767			

 Table 15: Retrofitting simulation with introducing pocket courtyard for stack ventilation with only mechanical ventilation

Source: Author

Si	Simulation 3 - Windows and Doors Closed / Mech Vent On								
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average				
Jan	385	330	201	303	212				
Feb	266	282	134	232	161				
Mar	167	187	112	184	118				
Apr	145	169	102	177	109				
May	194	206	117	179	126				
Jun	252	258	132	225	154				
Jul	371	314	173	290	201				
Aug	317	284	185	240	181				
Sep	359	300	202	266	198				
Oct	198	199	149	187	132				
Nov	254	231	188	193	154				
Dec	334	261	229	243	187				
Total	3242	3021	1924	2719	2727				

Table 16: Retrofitting simulation with introducing pocket courtyard for stack ventilation with hybrid ventilation Source: Author

Simulation 3 - Windows and Doors open / Mechanical ventilation On							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average		
Jan	391	329	246	303	220		
Feb	313	290	170	250	180		
Mar	235	233	144	194	144		
Apr	217	213	130	181	133		
May	209	215	139	179	134		
Jun	261	257	156	222	159		

Jul	365	305	194	290	202
Aug	311	274	192	233	178
Sep	353	291	209	260	195
Oct	237	216	165	186	144
Nov	253	219	199	189	153
Dec	333	258	255	240	190
Total	3478	3100	2199	2727	2876

Table 17: Simulation with cool roof paint with only hybrid ventilation Source: Author

Simula	Simulation 4 - Windows and Doors open / Mechanical ventilation On							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	391	329	246	304	221			
Feb	313	289	169	256	180			
Mar	236	234	145	196	145			
Apr	217	213	134	188	135			
May	211	219	146	185	137			
Jun	263	263	161	228	162			
Jul	366	304	201	294	204			
Aug	312	272	196	240	180			
Sep	354	291	212	265	197			
Oct	238	219	168	194	146			
Nov	254	221	200	189	153			
Dec	333	257	255	238	190			
Total	3488	3111	2233	2777	2902			

Table 18: Simulation with cool roof paint with only mechanical ventilation Source: Author

Si	Simulation 4 - Windows and Doors Closed / Mech Vent On							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	385	330	203	305	213			
Feb	266	283	140	237	163			
Mar	168	190	116	190	120			
Apr	148	169	102	180	110			
May	196	210	120	186	129			
Jun	253	263	132	229	156			
Jul	371	312	178	294	202			
Aug	318	281	187	245	182			
Sep	359	300	207	269	199			
Oct	198	198	148	189	132			
Nov	254	230	187	195	154			
Dec	334	260	228	243	187			
Total	3250	3026	1948	2762	2747			

Table 19: Simulation with cool roof paint with no ventilation Source: Author

Simulatio	Simulation 4 - Windows and Doors Closed / Mechanical ventilation turned off							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	386	330	198	310	213			
Feb	262	283	135	238	162			
Mar	158	183	115	193	118			
Apr	131	164	96	178	105			
May	189	207	115	185	126			
Jun	248	261	131	229	155			
Jul	373	315	177	294	203			
Aug	316	283	185	245	181			
Sep	359	301	206	271	199			
Oct	194	197	149	189	131			
Nov	249	231	188	198	154			
Dec	336	261	229	250	188			
Total	3201	3016	1924	2780	2730			

Table 20: Simulation with cool roof paint with only natural ventilation Source: Author

Simulation	Simulation 4 - Windows and Doors Open / Mechanical ventilation turned off							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average			
Jan	390	330	244	306	221			
Feb	313	289	169	256	180			
Mar	236	234	145	197	145			
Apr	217	213	134	188	135			
May	208	218	146	188	137			
Jun	261	262	159	228	162			
Jul	367	305	200	293	204			
Aug	312	273	197	238	180			
Sep	353	293	212	265	197			
Oct	238	220	169	194	146			
Nov	254	221	202	189	154			
Dec	335	259	255	242	191			
Total	3484	3117	2232	2784	2904			

Table 21: Simulation with cross ventilating windows, stack ventilating courtyard and cool roof paint with only natural ventilation

Source: Author

Source. Author								
Simulation 5 - Windows and Doors Open / Mechanical ventilation turned off								
Months	Bedroom 1 Bedroom 2 Kitchen Living Hall Average							
Jan	390	330	243	303	220			
Feb	311	289	166	243	177			
Mar	236	234	140	191	143			
Apr	216	211	129	177	132			
May	206	207	138	174	131			
Jun	257	251	154	220	157			

Jul	367	308	188	283	201
Aug	310	277	191	233	178
Sep	355	297	206	257	196
Oct	239	213	165	188	144
Nov	254	221	200	190	153
Dec	335	261	255	244	192
Total	3476	3099	2175	2703	2863

Table 22: Simulation with cross ventilating windows, stack ventilating courtyard and cool roof paint with no ventilation

Source: Author

Simulation 5 - Windows and Doors Closed / Mechanical ventilation turned off							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average		
Jan	386	330	199	307	213		
Feb	260	275	128	221	156		
Mar	156	180	111	180	114		
Apr	129	152	95	171	101		
May	183	196	113	174	121		
Jun	241	249	128	219	149		
Jul	369	316	167	280	199		
Aug	314	284	183	238	180		
Sep	357	302	198	262	196		
Oct	196	193	147	188	130		
Nov	250	231	187	198	154		
Dec	336	266	228	253	190		
Total	3177	2974	1884	2691	2682		

Table 23: Simulation with cross ventilating windows, stack ventilating courtyard and cool roof paint with only mechanical ventilation

Source: Author

Simulation 5 - Windows and Doors Closed / Mech Vent On							
Months	Bedroom 1	Bedroom 2	Kitchen	Living Hall	Average		
Jan	386	330	202	304	213		
Feb	264	281	130	223	159		
Mar	168	187	113	179	117		
Apr	145	165	100	173	107		
May	190	199	117	175	124		
Jun	243	252	132	220	151		
Jul	369	315	168	280	199		
Aug	316	284	183	240	180		
Sep	358	300	198	263	196		
Oct	198	198	147	186	131		
Nov	254	233	184	194	153		
Dec	334	262	229	248	188		
Total	3225	3006	1903	2685	2705		

 Table 24: Simulation with cross ventilating windows, stack ventilating courtyard and cool roof paint with hybrid ventilation

Source: Author Simulation 5 - Windows and Doors open / Mechanical ventilation On Bedroom 1 Bedroom 2 Kitchen Months Living Hall Average Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Upon analyzing all 20 simulations, it becomes evident that Bedroom 1 achieves the highest thermal comfort hours annually, totalling 3509, relying solely on natural ventilation. Conversely, the kitchen records the lowest thermal comfort hours, registering 1884 hours per year without any form of ventilation. A room-wise breakdown reveals that in the Bedroom 1, situated in the Southwest, the 1st and 2nd types of simulations under natural and hybrid ventilation modes yield the maximum thermal comfort hours. Conversely, the 2nd and 5th types of retrofit simulations under no ventilation conditions result in the minimum comfort hours due to inadequate natural ventilation and increased heat trapping from west-facing sunlight.

Total

Similar trends are observed in the Bedroom 2, located in the South. For the kitchen, the 4th type of retrofit simulation under hybrid and natural ventilation conditions exhibits the maximum thermal comfort hours. The kitchen's discomfort in other scenarios, especially in the 2nd and 5th types of simulations under no ventilation, is attributed to its significant exterior walls on the Southeast, leading to heat trapping exacerbated by cooking activities.

The living room, a space where occupants spend a substantial time, attains its highest thermal performance in the 1st and 3rd types of simulations without any ventilation. This is attributed to the open space in the living room, reducing heat trapping. Paradoxically, the thermal performance is lowest in the 5th type of simulation with mechanical ventilation and hybrid mode. This is due to the courtyard space and open doors and windows causing temperatures to fall below acceptable indoor levels during winter months, resulting in discomfort.

Figure 3 compares the five types of simulations under different ventilation modes for further analysis.

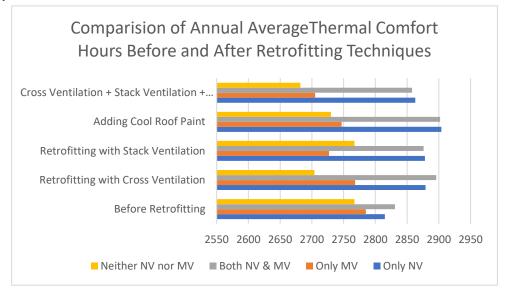


Fig. 3: Comparative analysis for the annual thermal comfort hours in various retrofitting techniques and different mode of ventilation

Source: Author

Conclusion

The analysis of 20 simulations yields valuable insights into the thermal performance of distinct spaces within the residence under various ventilation conditions. Bedroom 1 emerges as the most thermally comfortable space, primarily relying on natural ventilation, while the kitchen faces challenges with the lowest thermal comfort hours due to specific architectural characteristics and heat-trapping issues. This breakdown by room underscores the importance of ventilation strategies, with Bedrooms 1 and 2 benefiting from well-designed natural ventilation, and the kitchen relying on natural ventilation for optimal performance.

The thermal performance of the living room presents an intriguing paradox, with the highest comfort hours observed in simulations without any ventilation, but a counter-intuitive decrease in comfort with mechanical ventilation and hybrid modes. This underscores the nuanced dynamics of open spaces and emphasizes the need for thoughtful consideration in incorporating ventilation strategies.

The study highlights the critical role of natural ventilation in achieving thermal comfort, especially in spaces with specific orientations and heat-trapping challenges. The insights offer valuable guidance for architects, builders, and homeowners in optimizing thermal comfort through strategic ventilation design. While focused on a specific residence, the study contributes to the broader discourse on sustainable design practices, providing actionable insights for creating energy-efficient and comfortable living environments, although case study findings are not generalizable.

Acknowledging limitations, including a focus on a warm humid climate, single residences smaller than 1100 sq.ft, and an exclusive analysis of the ground floor, is essential. Adding to these findings, other research indicates that the choice of roof design can significantly impact thermal performance, with Gable roofs proving more efficient in ventilating hot air (Noithapthim et al., 2023). Design factors such as the optimal area and number of openings, as highlighted by Ibrahim and Hassan (2023), and the ratio of openings, as emphasized by Werdiningsih et al. (2023) play crucial roles in influencing thermal performance. Cultural practices, such as window repetition in Indonesia also contribute to enhanced thermal efficiency (Nugroho et al., 2023). Moreover, as Ahmed and Al Ali, (2023) points out, the integration of climate-responsive design in restored traditional buildings influences occupants' psychological behavior. Residences with a perimeter-area ratio of 0.8:0.65 exhibit superior thermal comfort, as suggested by Srivastava and Das (2023). Building floor height also proves

influential, as mentioned by Guntur et al. (2023). Additionally, simulations conducted by Mansour et al. (2023) demonstrate that introducing a 3mm nano coating on building walls can significantly reduce heat flux by up to 52%.

Future research could explore broader parameters for a more comprehensive understanding of thermal dynamics in diverse residential settings, with further exploration and refinement of passive design strategies, considering seasonal variations and occupancy patterns, to enhance the overall effectiveness of residential spaces.

Acknowledgements: This research did not receive any financial support. However, we would like to appreciate the academic support received from the Department of Architecture, National Institute of Technology, Tiruchirapalli, India.

References

- Ahmed & Saba Sami Al Ali. (2023) Psychological Relationships Between Heritage Buildings and their Occupants: A Theoretical Exploration. *ISVS e-journal*, 10(7), 211-230.
- Ahmed, A.S.F., Khan, K.M.M.K., Maung Than Oo, A.A. & Rasul, R.M.G. (2014) Selection of suitable passive cooling strategy for a subtropical climate. *International Journal of Mechanical and Materials Engineering*, 9(1), 1-11.
- Baruti, M.M., Johansson, E. & Åstrand, J. (2019) Review of studies on outdoor thermal comfort in warm humid climates: challenges of informal urban fabric. *International journal of biometeorology*, 63, 1449-1462.
- Basuki, K., Antaryama, I. & Samodra, F.X. (2022) Simulation Modelling of Roof Design of Indonesian Airport Terminal For Optimal Utilization of Cooling Energy. *International Journal of Engineering Research and Advanced Technology (IJERAT)*, 8(7), 17-22.
- Brager, G., Zhang, H. & Arens, E. (2015) Evolving opportunities for providing thermal comfort. *Building Research & Information*, 43(3), 274-287.
- Cândido, C., De Dear, R.J., Lamberts, R. & Bittencourt, L. (2010) Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone. *Building and environment*, 45(1), 222-229.
- Chan, S.Y., Chau, C.K. & Leung, T.M.(2017) On the study of thermal comfort and perceptions of environmental features in urban parks: A structural equation modeling approach. *Building and environment*, 122, 171-183.
- Crawley, D.B., Hand, J.W., Kummert, M. & Griffith, B.T. (2008) Contrasting the capabilities of building energy performance simulation programs. *Building and environment*, 43(4), 661-673.
- Dear, R.J., Akimoto, T., Arens, E.A., Brager, G., Candido, C., Cheong, K.W.D., Li, B., Nishihara, N., Sekhar, S.C., Tanabe, S. & Toftum, J. (2013) Progress in thermal comfort research over the last twenty years. *Indoor air*, 23(6), 442-461.
- Dewi, P.M. & Antaryama, I.G.N. (2017) Conflicting Factors in the Design of Naturally Ventilated Apartment in Warm Humid Tropics. *Journal Sains dan Seni ITS*, 6(1), G27-G30.
- Guntur., Kemas R. Kurniawan., Dalhar Sutanto. & Yunitha. (2023) Housing Adaptations to Climate: Vernacular Settlements on the Kahayan Riverbank at Palangka Raya, Indonesia. *ISVS e-journal*, 10(8), 1-14.
- Höppe, P. (2002) Different aspects of assessing indoor and outdoor thermal comfort. *Energy and buildings*, 34(6), 661-665.
- Ibrahim. & Susan Abed Hassan. (2023) Design Strategies Employed to Achieve Thermal Comfort in Traditional Religious Buildings in Iraq. *ISVS e-journal*, 10(2), 123-135.
- Karthikeyan, M. & Kumaraguruparan, S.V. (2023) July. Evaluating the influence of passive design techniques of warm and humid climate in a traditional building at Chennai. In IOP Conference Series: *Earth and Environmental Science*, 120(1), 12-21. *IOP Publishing*.
- Ličina, V.F., Cheung, T., Zhang, H., De Dear, R., Parkinson, T., Arens, E., Chun, C., Schiavon, S., Luo, M., Brager, G. & Li, P.(2018) Development of the ASHRAE global thermal comfort database II. *Building and Environment*, 142, 502-512.
- Luo, M., Wang, Z., Ke, K., Cao, B., Zhai, Y. & Zhou, X. (2018) Human metabolic rate and thermal comfort in buildings: The problem and challenge. *Building and Environment*, 131, 44-52.

- Mansour., Nanes EL-Sayad. & Lamis Saad El-Din El-Gizawi. (2023) Applying Nano Coatings on Buildings to Improve Thermal Performance & Energy Efficiency: A Simulation of a Health Care Building in Egypt. *ISVS e-journal*, 10(9), 1-14.
- Muller, C. J. & O'Gorman, P.A. (2011) An energetic perspective on the regional response of precipitation to climate change. *Nature Climate Change*, 1(5), 266-271.
- Noithapthim., Thanasun Tepparat., Mohummad Eisa Ruhullah. & Suphat Bunyarittikit. (2023) The Impact of Sea Breeze on the Islamic Vernacular Houses: The Settlements of Tha-Sala in Southern Thailand. *ISVS e-journal*, 10(5), 246-261.
- Nugroho., Bangun I. R. Harsritanto., Arindy Givesa Amalia. & Resza Riskiyanto. (2023) Typologies of Windows in Vernacular Buildings Based on Materials and Line Constructions: The Case of Kota Lama Semarang, Indonesia. *ISVS e-journal*, 10(6), 321-331.
- Sarwate., Nikita. A.Soni. & Rasika Acharya. (2023) Occupancy Rate of Residential Units as an Indicator of Urban Sprawl and Land Efficiency: The Case of Vadodara, India. *ISVS e-journal*, 10(7), 427-434.
- Srivastava. & Das, Bijay Kumar (2023) Vernacular Architecture of India: An Overview. *ISVS e-journal*, 10(7), 435-448.
- Uzakbayev, Lyazzat Nurkusheva, Galina Iskhojanova, Zhanerke Imanbayeva. & Karina Chiknoverova. (2023) Evolutionary and Integrated Features for Designing Business Centers in Kazakhstan. *ISVS e-journal*, 10(4), 247-259.
- Wang, J., Wang, Z., de Dear, R., Luo, M., Ghahramani, A. & Lin, B. (2018) The uncertainty of subjective thermal comfort measurement. *Energy and Buildings*, 181, 38-49.
- Wang, N. & Adeli, H. (2014) Sustainable building design. *Journal of civil engineering and management*, 20(1), 1-10.
- Werdiningsih., Ni Kadek Ayu Yulita., Indriasjario . & Arnis Rochma Harani. (2023) Strategies to Improve the Quality of Educational Environments: An Evaluation of the Student Center Building at the Diponegoro University, Semarang, Indonesia. *ISVS e-journal*, 10(4), 156-167.
- Yeretzian, A. & Karam, J. (2023) Optimizing the use of natural ventilation while reducing energy cost_case study for retrofitting an old residential apartment in a Mediterranean city. *Energy and Buildings*, 29(6), 113-137.
- Zune, M., Rodrigues, L. & Gillott. M. (2020) Vernacular passive design in Myanmar housing for thermal comfort. *Sustainable Cities and Society*, 54,10-19.