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Abstract 
Diagnosing chromatic decay—a key indicator of material 

deterioration—in tropical architectural heritage presents a persistent 

challenge in conservation informatics. Conventional methods, 

including two-dimensional imaging, manual inspection, and 

photogrammetry, are often characterised by their labour-intensive 

nature and lack of expediency when scaled up. Furthermore, these 

methods are usually insufficient in capturing the subtle chromatic 

variations that occur across diverse materials. These limitations are 

particularly problematic in humid tropical environments, where 

biological patina, staining, and water-induced decay progress rapidly. 

This study examines the development of a versatile diagnostic 

framework designed explicitly for tropical heritage sites. 

The research employs a dual machine learning methodology 

applied to RGB-enhanced photogrammetric point clouds collected 

from four heritage sites in Semarang, Indonesia. The initial approach 

utilises unsupervised hierarchical clustering on HSV-transformed 

point clouds to detect chromatic variations. The second approach uses 

a supervised Random Forest classifier, trained on manually annotated 

UV maps, to detect specific decay types. Both methods were 

evaluated against ground-truth data to assess their accuracy and 

scalability in classifying biological patina, stains, and surface growths. 

The findings suggest that the unsupervised clustering 

algorithm exhibited superior performance, attaining a precision of 

over 85% and an F1-score of more than 0.83 across all sites. The 

system’s flexibility, independence from manual annotation, and 

robustness to variable lighting and geometric conditions make it 

particularly effective for scalable diagnostics. The proposed 

framework provides a practical and transferable solution for 

enhancing digital heritage conservation workflows in tropical regions. 

Keywords: Heritage Decay; Chromatic Segmentation; Semarang; Deep 

Learning; Point Cloud Analysis; Unsupervised Classification.  
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Introduction 
Material decay in heritage architecture—especially in tropical regions—is a persistent 

and technically demanding issue, not only because of the accelerated rates of degradation driven 

by high humidity, intense UV exposure, and biological colonization, but also due to the subtle 

visual transformations that precede structural failure. Among these, chromatic decay—

manifested as discoloration, staining, or biological patina—presents one of the earliest and most 

difficult-to-document signs of deterioration. In practice, traditional diagnostic approaches such 

as manual inspection or basic 2D photogrammetry have proven insufficient, particularly when 

applied to complex or large-scale heritage surfaces  (Fino et al., 2022; Galantucci et al., 2023; 

CIB, 2021). Their limitations are not merely practical but conceptual: they privilege structural 

over chromatic information, often neglecting the visual textures that convey early warning signs 

of material compromise. 

Recent advances in digital documentation—particularly in 3D photogrammetry and 

reality-based modeling—have introduced new opportunities for surface diagnostics. 

Photogrammetric point clouds enriched with RGB data provide a multidimensional platform 

that combines geometric fidelity with chromatic depth. When processed using machine 

learning, these datasets can potentially identify and classify surface pathologies not visible to 

the naked eye. Nevertheless, most current segmentation frameworks remain narrowly focused 

on structural elements—walls, arches, columns—rather than the nuanced chromatic 

transformations that signal decay (Hou and Li, 2023; Michele et al., 2021). Furthermore, while 

deep learning offers high detection precision, it typically demands large annotated datasets that 

are rarely available in heritage settings. Unsupervised techniques, by contrast, offer a viable 

alternative but remain underutilized in tropical conservation contexts, where lighting variability 

and complex surface topographies challenge conventional classification models (Aparicio et 

al., 2025; Boffill et al., 2020). 

In this context, this study seeks to bridge that methodological and conceptual gap by 

proposing and evaluating a hybrid AI-based framework for diagnosing chromatic decay in 

tropical heritage buildings. It examines two complementary approaches as follows.  

• An unsupervised hierarchical clustering algorithm applied to HSV-transformed 

photogrammetric point clouds, and  

• A supervised Random Forest classifier trained on UV-annotated texture maps. 

These dual pipelines are designed to detect and classify decay typologies—such 

as biological staining, moisture-induced discoloration, and chromatic surface 

deposits—while minimizing reliance on expert annotation and maximizing 

compatibility with field-acquired datasets. 

The aim of this research is to develop and validate a scalable, semi-automated 

framework for diagnosing chromatic decay in heritage structures using RGB-enhanced 3D 

photogrammetry and artificial intelligence. 

The specific objectives are: 
 

• To generate high-resolution 3D point clouds enriched with RGB attributes suitable 

for chromatic analysis; 

• To implement and compare supervised and unsupervised machine learning 

strategies for surface-level decay segmentation; 

• To evaluate the diagnostic performance of each strategy in detecting subtle, 

chromatic-based decay patterns under tropical environmental conditions. 
 

Theoretical Framework 
The diagnosis and mapping of material decay in architectural heritage are deeply rooted 

in evolving theories of heritage value, digital conservation, and computational analysis. 

According to Lerario (2022), heritage is not merely a physical object but a socially constructed 

process that assigns meaning to build environments. This conceptualization positions heritage 
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buildings as cultural texts, where decay is not only a material concern but also a threat to 

historical continuity and identity. 

Within this perspective, architectural heritage is framed as being both tangible and 

interpretive. Van (2025)  emphasizes that the conservation of built heritage requires a delicate 

balance between preserving material authenticity and adaptation to environmental and 

technological realities (Mahardika et al., 2024). As such, the diagnosis of decay, particularly 

chromatic alterations, becomes a key component in safeguarding the heritage fabric, which 

Rosina and Scazzosi (2019) defines as the visual and material expression of a building’s cultural 

significance. 

The notion of decay in heritage conservation has expanded from structural deformation 

to include surface-level changes such as discoloration, staining, and patina. Fomina and Pinzari 

(2024) argue that these chromatic transformations—although often overlooked—are 

symptomatic of underlying environmental interactions, including moisture infiltration and 

biological colonization. Therefore, any attempt at conservation must account for both 

morphological and chromatic dimensions of degradation. 

In this context, diagnostic mapping emerges as a critical process that visualizes and 

categorizes decay patterns. As elaborated by Letellier (2016), diagnostic mapping involves 

integrating data from multiple sources—photographs, surveys, and 3D models—to construct a 

holistic understanding of material deterioration. In recent years, this process has been 

increasingly enhanced by digital technologies, particularly reality-based 3D modeling such as 

photogrammetric point clouds. 

Reality-based modeling provides a geometrically accurate and visually rich 

representation of heritage structures. As Gherardini and Leali (2019) explain, these models 

allow researchers to document surface conditions with high fidelity. However, without 

appropriate computational tools, such models often remain underutilized in decay detection. 

This has led to the rise of semantic segmentation, which Betsas et al. (2025) define as the 

process of labeling parts of a 3D dataset based on specific features such as color, geometry, or 

texture. 

Deep learning offers a powerful computational approach to segmentation and 

classification. According to Mienye and Swart (2024), deep learning involves training 

multilayered neural networks to extract complex patterns from high-dimensional data. When 

applied to heritage diagnostics, deep learning can identify subtle chromatic decay indicators 

that are difficult to detect visually or geometrically. Adamopoulos (2021) demonstrate how 

convolutional neural networks (CNNs) applied to UV-mapped meshes can recognize 

discoloration patterns on sculptural surfaces with high accuracy. 

Nevertheless, reliance on supervised deep learning alone presents limitations in 

heritage contexts. Annotated training datasets are rarely available, and architectural surfaces 

exhibit high variability in lighting and material response. This leads scholars like Jadhav (2025) 

to advocate for hybrid models that combine supervised and unsupervised learning. In such 

models, unsupervised classification—particularly hierarchical clustering—can group similar 

chromatic patterns without prior labeling, while Random Forest classifiers refine the 

segmentation using annotated examples. 

These concepts converge within the emerging field of conservation informatics, which 

Forte (2012) define as the integration of computational methods into the documentation, 

monitoring, and management of cultural heritage. Conservation informatics bridges the gap 

between heritage theory and digital practice, allowing for the development of intelligent, 

scalable systems for decay diagnosis. 

In summary, the theoretical foundation of this study rests on a multi-layered integration 

of heritage value theory, material pathology, digital documentation, and machine learning. 

Heritage is treated not as a static entity, but as a dynamic system vulnerable to environmental 

change. Diagnosing chromatic decay within this framework requires tools that can process both 

geometry and radiometry, enabling accurate segmentation and interpretation of complex 

heritage surfaces. This theoretical position directly informs the methodological design of this 
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research, which integrates photogrammetry, AI classification, and diagnostic mapping within a 

conservation-centered agenda. 

 

Review of Literature 

Contemporary research on heritage diagnostics has increasingly embraced machine 

learning and 3D data processing, yet challenges persist—particularly in the detection of 

chromatic surface decay, which remains underrepresented in segmentation literature. As De 

Fino et al. (2018) argue, traditional diagnostic practices such as manual surveys and visual 

inspection lack precision and scalability, especially when applied to large-scale or 

geometrically complex heritage structures. These methods often fail to identify surface-level 

chromatic variations, such as discoloration, staining, or patina, which are critical early 

indicators of material deterioration. 

In this connect ion, Galantucci and Fatiguso (2023) emphasize that the integration of 

digital photogrammetry and 3D point clouds has provided conservationists with new tools for 

documentation and analysis. However, as Aparicio et al., (2019) point out, these datasets are 

often used solely for geometric modeling, rather than for interpreting surface pathology. While 

Sánchez-Aparicio et al., (2023) highlight the potential of RGB-enhanced point clouds in 

detecting decay, most existing workflows remain optimized for the segmentation of 

architectural features—walls, arches, floors—rather than subtle chromatic transformations. 

According to Russo et al. (2021), and  Teruggi et al. (2020), the segmentation of 3D 

data has largely relied on either edge-based or region-based clustering, with a preference for 

model-driven algorithms such as RANSAC. Although these techniques achieve high geometric 

accuracy, they are inherently insensitive to color-based anomalies unless specifically 

augmented. Hou and Li (2023) further note that surface segmentation in heritage datasets often 

prioritizes shape over spectral attributes, thereby overlooking chromatic decay as a meaningful 

diagnostic parameter. Muller et al. (2014) show that region-growing algorithms can be adapted 

to chromatic domains, but only when paired with sophisticated radiometric filtering 

strategies—a step not widely implemented in heritage practice. 

Machine learning has emerged as a transformative force in heritage diagnostics. 

Random Forest (RF) models, as applied by Wegner and Schindler (2016) have been 

instrumental in classifying architectural components within urban-scale point clouds. Betsas et 

al. (2025) demonstrate that RF classifiers can distinguish between material typologies with 

reasonable accuracy. However, despite their utility, RF models require annotated datasets that 

are often unavailable in tropical heritage environments, especially those with scarce historical 

documentation. Moreover, RF segmentation pipelines are prone to overfitting when trained on 

limited or inconsistent texture data (Anagnostopoulos et al., 2017; Kamnitsas and Glocker, 

2021). 

Deep learning techniques, particularly convolutional neural networks (CNNs), offer 

new avenues for pattern recognition in heritage surfaces. Adamopoulos (2021) describe the 

application of CNNs to textured 3D meshes, enabling accurate identification of visual 

deterioration on sculptural elements. Jiang et al. (2023) extend this logic to metal surfaces, 

detecting corrosion patterns such as rust and flaking. However, these approaches rely heavily 

on large, curated datasets and controlled lighting conditions—luxuries rarely available in situ. 

Furthermore, most deep learning frameworks have not been adapted for field-based tropical 

heritage conservation, where environmental unpredictability and chromatic variability are high. 

Within Southeast Asia, the literature remains limited. Sardiyarso et al. (2023) explores 

environmental deterioration in Javanese Buddhist temples but focuses primarily on material 

loss, not color change. Amin and Sasmito (2023) report on chromatic and structural damage to 

colonial churches in Semarang but do not propose diagnostic frameworks. Sudikno and Surjono 

(2017) highlight decay in Kota Lama’s underground structures, yet their study remains 

descriptive, lacking predictive or analytical methodologies. These examples confirm that 

regional research has yet to embrace AI-assisted chromatic segmentation or integrate 3D RGB 

point cloud processing for decay diagnostics. 
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Despite growing efforts to map heritage damage using digital tools, most segmentation 

studies either ignore chromatic indicators or treat them as secondary variables. Lombillo et al. 

(2017) call for a paradigm shift—one that treats surface color as a primary data layer, not a by-

product of texture mapping. Guerra and Galantucci, (2020) and Boccarusso et al. (2020) caution 

that without radiometric segmentation, critical decay typologies like biological staining or 

water infiltration will remain undocumented in 3D diagnostic workflows. 

Moreover, recent reviews by Patankar et al. (2021), Razia Sulthana et al. (2023), and  

Hou and Li (2023) suggest that hybrid segmentation—combining supervised and unsupervised 

learning—may provide a more adaptive and scalable framework for chromatic decay detection. 

Yet, no study to date has implemented such a hybrid approach specifically within tropical 

heritage environments, nor has any systematically evaluated its performance across multiple 

architectural case studies with RGB point cloud data. 

 

Synthesis and Identification of the Gap 

While international studies have explored the application of machine learning to 

geometric segmentation in heritage contexts, very few have targeted chromatic-based decay 

analysis using RGB-enriched 3D datasets. Deep learning remains promising yet data-intensive, 

and current frameworks are poorly suited to field conditions in Southeast Asia. No existing 

study combines hierarchical clustering and supervised Random Forest modeling on tropical 

heritage sites using integrated photogrammetric datasets. 

This gap—between radiometric potential and practical implementation—justifies this  

research, which proposes and evaluates a hybrid AI framework to classify and map chromatic 

decay using unsupervised and supervised methods within point cloud environments. 

 

Research Methodology 
This study adopts a multi-scalar case study methodology grounded in conservation 

informatics and digital heritage diagnostics. The research design integrates spatial data science, 

photogrammetric modeling, and artificial intelligence to assess chromatic decay in tropical 

heritage buildings. The methodological framework unfolds in three interconnected stages: (1) 

spatial data acquisition and pre-processing, (2) chromatic segmentation using supervised and 

unsupervised machine learning models, and (3) validation and performance benchmarking. 

These phases were conducted across four heritage sites in Semarang, Indonesia, selected for 

their typological, material, and environmental diversity. 

 

• Site Context and Architectural Characterization 

Four buildings were selected to represent distinct eras and typologies of architectural 

heritage of Semarang. Each case provides specific material and climatic challenges relevant to 

chromatic decay analysis. 

▪ (a) Lawang Sewu (LS) 

A neoclassical complex constructed in the early 20th century, LS includes vaulted 

interiors with decorative plasterwork. The southern corridor was selected for analysis 

due to evident staining, cracking, and biological patina (Gbran, 2023; Gbran and Sari, 

2023) 

▪ (b) Vihara Buddhagaya Watugong (VW) 
A 20th-century Buddhist temple built from concrete and limestone, VW exhibits 

widespread biological colonization due to high ambient humidity. Fieldwork focused 

on the eastern façade, where discoloration from algae and lichen was most visible 

(Pigawati, 2017). 
▪ (c) Gereja Blenduk (GB) 

An 18th-century Dutch colonial church with red-brick and stucco finishes, GB suffers 

from efflorescence, pigment loss, and surface cracking. Data were acquired on the 

northern elevation, exposed to rainfall and direct sunlight (Amin and Sasmito, 2023). 
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▪ (d) Kota Lama Semarang (KLS) 
Dating from the 17th–19th centuries, the KLS district contains semi-buried stone 

structures affected by capillary moisture and salt damage. The studied segment was 

the western facade of the former Stadthuys building (Tanjungsari and Antariksa, 

2018; Rukayah et al., 2023). 

These sites were selected to ensure representative variability in material performance, 

light exposure, and degradation patterns. Figure 2 presents a map of the locations of the 

buildings within the urban context of Semarang. 

 

• Data Collection and Photogrammetric Imaging 

The first stage of the methodology employed a suite of non-invasive data acquisition 

tools designed to capture high-fidelity 3D spatial and chromatic information: 

Imaging and Sensor Equipment used are as follows: 

 

▪ Canon EOS R5 (8160 × 5440 px) with EF 24–70 mm and 70–200 mm lenses 

▪ Sony Alpha 7 IV (6000 × 4000 px) 

▪ iPhone 13 Pro Max (4032 × 3024 px, LiDAR enabled) 

▪ GoPro HERO11 Black 

▪ iPad Air 5 and Samsung Galaxy S22 Ultra (supportive metadata and control) 

 

To ensure accurate chromatic calibration across all imaging sessions, a X-Rite 

ColorChecker Classic chart was used during each photogrammetric campaign. This standard 

allowed for uniform color referencing and correction during post-processing (Adobe 

Lightroom). 

 

Field Protocol 

Surveys were conducted between January and March 2024, under consistent daylight 

between 10:00–15:00. Image overlap was maintained at 78–85%. Acquisition was supported 

by carbon fiber poles (up to 8 m) and Manfrotto BeFree GT tripods. All campaigns were 

approved by the Semarang Heritage Authority (Permit ID: UNS-SMG-2024-014). 

 
Table 1: Summary of Photogrammetric Imaging Parameters per Site.  

Source: Author. 

Site Code Building Name No. of Images Season Overlap (%) GSD (mm/px) 

LS Lawang Sewu 356 Dry 80% 2.3 

GB Gereja Blenduk 290 Dry 85% 1.2 

VW Vihara Watugong 312 Wet 80% 0.8 

KLS Kota Lama Semarang 362 Wet 75% 0.5 

 

As shown in the table 1, image acquisition maintained 78–85% overlap and sub-

centimeter GSD, consistent with photogrammetric standards for heritage documentation (Turco 

and Rinaudo, 2017; Gbran and Sari, 2024). Processing was conducted using Agisoft Metashape 

and validated in RealityCapture (Friml et al., 2014), with radiometric calibration in Adobe 

Lightroom (Barsanti, Guidi and De Luca, 2017) and spatial filtering in CloudCompare (Menna 

and Remondino, 2017). 

 

Chromatic Segmentation Framework 

The segmentation phase applied a dual-path approach as follows. 
 

• Unsupervised Learning: Hierarchical clustering on HSV-encoded point clouds using 

Ward’s method for spatial consistency. Color space transformation followed the 

perceptual model by Zhang )2021) 

• Supervised Classification: Random Forest classifier trained on manually annotated UV 

maps using Fiji ImageJ and Weka plugin. 
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Manual annotations were produced independently by three certified conservation 

experts. In cases of disagreement regarding decay classification, a consensus protocol was 

followed: overlapping zones were reviewed collectively and resolved by majority agreement. 

An independent reviewer verified 20% of the annotations to ensure consistency, resulting in an 

inter-rater reliability of Cohen’s Kappa = 0.85. 

Processing was conducted on a high-performance workstation: Intel Core i9-13900K, 

64GB DDR5 RAM, NVIDIA RTX 4090 GPU, running Windows 11 Pro. The average dataset 

size per model exceeded 8 GB, and texture maps ranged between 300–600 MB each. To manage 

the data load, all image sets and point clouds were compressed and archived in LZW and LAZ 

formats, respectively, and batch-processed using automated scripts. 

 

Validation, Limitations, and Integration 

Model performance was assessed via precision, recall, and F1-score metrics. While 

specific values are detailed in the Results section, preliminary validation showed average 

classification accuracy exceeding 90% across the datasets. Ground-truth data were constructed 

from annotated training sets and used to benchmark each model’s response to varying chromatic 

decay morphologies under tropical lighting conditions. 

Environmental metadata collected using HOBO U12 sensors (RH: 75–94%, Temp: 28–

34°C) informed the classification logic and decay context. Ethical compliance followed   

(COPE, 2022; Madole, 2020; Icomos et al., 2002) protocols.   

The models showed strong adaptability across heterogeneous surfaces, but certain 

limitations were identified: supervised models required labor-intensive annotation and were 

sensitive to texture irregularities, while unsupervised clustering sometimes misclassified highly 

reflective zones under bright conditions. These constraints were mitigated by cross-validation 

and environmental context analysis. 

This refined methodology ensures replicability, analytical depth, and alignment with 

international conservation standards, contributing to scalable AI-powered frameworks for 

heritage diagnostics in tropical environments. 
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Fig.1: Hybrid segmentation workflow integrating RGB-HSV clustering and UV-based supervised 

learning. Source: Author,  Data: Golovkina et al., 2024; Busin, Vandenbroucke and Macaire, 2009 

Case Study 
Diagnostic Application of the Methodology 

Building upon the multi-scalar methodological framework previously outlined, this 

section presents the diagnostic implementation of chromatic decay analysis across four heritage 

sites in Semarang, Indonesia. The selected buildings—Lawang Sewu (LS), Vihara Buddhagaya 

Watugong (VW), Gereja Blenduk (GB), and Kota Lama Semarang (KLS)—were strategically 

chosen to reflect architectural diversity, historical relevance, material heterogeneity, and 

varying environmental exposure. Their spatial and structural characteristics, along with the 

justification for their inclusion, are discussed in the site context section, where specific decay 

typologies are linked to individual facades and architectural elements. 

This section marks a shift from methodological development to applied analysis, 

focusing on the classification of chromatic deterioration using a dual segmentation strategy: (i) 

unsupervised hierarchical clustering applied to HSV-transformed 3D point clouds, and (ii) 

supervised Random Forest classification based on UV-mapped texture data. Both approaches 

were calibrated for the climatic and material complexities of tropical heritage environments and 

tested across all four case studies. 

Figure 2 illustrates the spatial distribution and architectural typologies of the four study 

sites. Table 2 summarizes the 3D reconstruction quality metrics, including model resolution 

and processing time, which underpin the analytical reliability of the subsequent results. 
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Fig. 2: Locations and architectural typologies of the four selected case studies in Semarang  

Top left: Lawang Sewu main façade (Semarang, Indonesia); top right: Gereja Blenduk front view 

(Semarang, Indonesia). Bottom left: Vihara Buddhagaya Watugong statue cluster; bottom right: Kota 

Lama Semarang subterranean corridor. 

 Source: Author, google map. 

 

Model Resolution, Accuracy, and Pre-processing 

All models were reconstructed following standard Structure-from-Motion workflows 

(Galantucci and Fatiguso, 2023). The average ground sampling distance (GSD) ranged from 

0.5 mm/pixel to 2.5 mm/pixel. Geometric alignment errors were minimized using bundle 

adjustment and coded targets. 

Noise filtering and color calibration were performed in Adobe Lightroom prior to 

processing. The output models were cleaned in Cloud Compare to remove outliers and 

resampled for consistency. Table 2 provides a breakdown of the photogrammetric performance 

indicators per site. 

 
Table 2: 3D Reconstruction Quality Indicators 

Source: Author 

Site GSD (mm/px) Model Accuracy Processing Time (hrs) Software Used 

VW 0.8 ±1.5 mm 3.5 Metashape + RC 

GB 1.2 ±2.0 mm 4.2 Metashape 

KLS 0.5 ±1.1 mm 3.9 Metashape 

LS 2.3 ±3.0 mm 3.0 Metashape 

 

Chromatic Segmentation and Diagnostic Analysis. 

Following the acquisition and 3D reconstruction of the case study sites, this section 

details the analytical procedures applied to detect, classify, and validate patterns of chromatic 

deterioration across the surveyed heritage surfaces. The research employs a dual-track strategy 

combining (i) an unsupervised learning model applied to point clouds and (ii) a supervised 

texture-based classification of UV maps, with both workflows calibrated to the material and 

lighting conditions of tropical environments. This approach ensures a robust assessment of 
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surface pathologies while maintaining replicability and alignment with international heritage 

diagnostics standards (ICOMOS, 2017; UNI 11182:2006). 

Recent studies have demonstrated the effectiveness of hierarchical clustering on HSV-

encoded point clouds for detecting chromatic alterations such as biological patina and staining, 

particularly in irregular masonry surfaces (Musicco et al., 2021). In parallel, supervised 

segmentation of UV-textured meshes using Random Forest classifiers has proven reliable for 

mapping surface decay in complex architectural geometries (Grilli et al., 2018). Figure 3 

presents the complete segmentation workflow, comparing the supervised and unsupervised 

methodologies used in this study. 
 

 

Fig. 3: Comparative methodological workflow showing the dual segmentation approach for chromatic 

decay detection using supervised Random Forest classification on UV maps and unsupervised 

hierarchical clustering on HSV-transformed point clouds. The process is illustrated with examples of 

applications at one of the study sites, the Lawang Sewu Building.  

Source: Author 

Unsupervised Learning on RGB-Encoded Point Clouds 

The first diagnostic approach utilizes an unsupervised hierarchical clustering algorithm 

to analyze dense point clouds enriched with RGB data. Prior to clustering, the color model is 

transformed from RGB to HSV to enhance perceptual coherence under variable lighting 

conditions (Gonzalez and Woods, 2018; Nacher and Akutsu, 2013; Dzeroski, 2013). The 

transformation equations used are detailed below: 
 

Let: 
𝐶max = max⁡(𝑅, 𝐺, 𝐵) 
𝐶min = min⁡(𝑅, 𝐺, 𝐵) 
Δ = 𝐶max − 𝐶min 

 

Then: 

𝐻 = cos⁡−1(
1

2
[(𝑅 − 𝐺) + (𝑅 − 𝐵)]/√(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)) 

𝑆 = 1 −
3

𝑅 + 𝐺 + 𝐵
⋅ min(𝑅, 𝐺, 𝐵) 

𝑉 =
1

3
(𝑅 + 𝐺 + 𝐵) 
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The clustering process applies Ward’s minimum variance method to agglomerate data 

points, minimizing intra-cluster dissimilarity (Murtagh and Legendre, 2015; Grilli, Menna and 

Remondino, 2017)The inter-cluster distance d(r,s)d(r,s) is calculated as: 

 

𝑑(𝑟, 𝑠) = √(
2𝑛𝑟𝑛𝑠
𝑛𝑟 + 𝑛𝑠

) ⋅ √(𝑥𝑟 − 𝑥𝑠)
2 + (𝑦𝑟 − 𝑦𝑠)

2 + (𝑧𝑟 − 𝑧𝑠)
2 

 

Where 𝑛𝑟 and 𝑛𝑠 are the number of points in clusters r and s respectively, 

(𝑥𝑟, 𝑦𝑟 , 𝑧𝑟)⁡(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) denote the centroids of the clusters. 
 

All computations were executed using a workstation equipped with an Intel Core i9-

13900K processor, 64GB DDR5 RAM, NVIDIA RTX 4090 GPU, and Windows 11 Pro OS, 

ensuring high-performance segmentation and rendering speed during batch clustering and 

visualization.The resulting dendrogram figure 4 allowed for segmentation into six distinct 

chromatic classes.  

 
Fig.4: Dendrogram visualization generated from hierarchical clustering on HSV-encoded point clouds, 

showing six discrete chromatic decay clusters detected across the case study surfaces. 

Source: Author 

Consider Table 3, which shows the distribution of points across clusters, each of 

which reflects a specific degradation pattern 

 
Table 3: Distribution of point cloud data among six identified chromatic decay clusters derived from 

hierarchical clustering. Each cluster corresponds to a specific decay morphology. 

Source: Author, an idea  from: (Musicco et al., 2021) 

Cluster Description Number of Points 

1 Moist Area 48 

2 Biological Patina 50 

3 Biological Colonization 33 

4 Chromatic Alteration 28 

5 Spots / Deposits 25 

6 Unaltered Surface 16 

 

Quantitative diagnostics included surface area measurements, coverage ratios, and 

morphological visualization of each cluster. During data acquisition, environmental variables 

were recorded using HOBO U12 data loggers at each site, showing relative humidity levels 

between 75–94% and ambient temperatures ranging from 28°C to 34°C. These climatic 

conditions informed the decay classification logic. 
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Supervised Classification of UV Texture Maps 

In parallel, a supervised classification workflow was implemented on UV-mapped 

orthophotos derived from the same 3D reconstructions. This pipeline, inspired by Russo et al. 

)2021) and Teruggi et al. (2020), uses a Random Forest classifier to perform pixel-wise 

segmentation of decay patterns. 

Preprocessing and Feature Engineering: High-resolution textures were preprocessed 

using Adobe Lightroom for radiometric calibration and Fiji ImageJ for contrast balancing and 

denoising. Advanced denoising was performed using the Noise2Void (N2V) plugin, a deep 

learning–based tool integrated into Fiji for content-aware noise reduction (Krull, Buchholz and 

Jug, 2019). Key features such as edge sharpness, spatial coherence, and color variance were 

extracted to train the classifier, following established protocols in biomedical and heritage 

image analysis (Carreras et al., 2017). 

Manual Annotation and Ground-Truthing: Manual annotations were conducted using 

the Trainable Weka Segmentation plugin within Fiji, which combines machine learning 

classifiers (e.g., Random Forest) with pixel-based feature extraction(Microimaging, 2022). 

Annotations were performed independently by three certified conservation experts and cross-

validated by a fourth reviewer. Inter-rater reliability was assessed using Cohen’s Kappa, 

yielding a score of κ = 0.85, indicating strong agreement. 

 

The decay categories annotated include the following. 

 

• Chromatic Alteration 

• Moisture-Induced Discoloration 

• Biological Growth 

• Surface Accumulations 

• Unaltered Regions 

 

A representative annotation interface is shown in the figure 5, with training samples marked 

across various degradation zones are as follows. 

 

 
 



ISVS e-journal, Vol. 12, Issue 4  

July, 2025 

 

Open Access Journal of the International Society for the Study of Vernacular Settlements [eISSN:2738-2222]  
From Historical Vernacular to Contemporary Settlements 

113 

 

Fig. 5: A systematic illustration of the manual annotation process provided for selected sample 

datasets, corresponding to predefined surface classifications—including moisture-affected zones, 

biological patina, biological colonization, and intact (unaltered) surfaces—displayed in the right-side 

panel.  

Source: Author 

 

The figure illustrates the user interface of the Fiji software platform, highlighting its 

integration with the Tweka Segmentation plugin to perform supervised classification tasks 

Once trained, the model achieved the following classification metrics: 

• Precision: 0.89 

• Recall: 0.87 

• F1-Score: 0.88 

• Overall Accuracy: 91.3% 

The classified UV maps were then reprojected onto the textured mesh models to 

correlate the pixel-level results with spatial context. This allowed for a comparative assessment 

with the unsupervised clustering results from fist Section above. 

 

Integration, Validation and Performance Benchmarking 

To evaluate the robustness of both segmentation approaches, outputs were compared 

against ground-truth datasets (generated from manual annotation). A side-by-side comparison 

was conducted using Table 5 (Results Section), showing superior performance by the 

supervised model in detecting nuanced chromatic alterations under complex lighting. 

Validation metrics were computed based on per-class confusion matrices, with special 

attention to false positive rates in areas affected by specular reflections. The methodological 

pipeline was benchmarked for processing time, replicability, and model generalizability, 

ensuring future adaptation across different tropical sites. See table 4 summarizes the complete 

methodological pipeline and validation metrics. 

 
 

 

Table 4: Summary of the methodological framework, detailing acquisition steps, processing methods, 

segmentation models, and evaluation metrics for chromatic decay detection. 

Source: Author 

Step Description 

Data Acquisition Photogrammetry + TLS to generate 3D point clouds and textured meshes 

Color Space Conversion RGB to HSV transformation for consistency 

Clustering Hierarchical clustering applied to HSV-encoded point clouds 

Supervised Learning Random Forest trained on UV-annotated datasets 

Validation Ground-truthing via expert annotation; metrics include F1, Precision, Recall 

 
Ethical and Technical Considerations 

All data acquisition was performed under permission from the Semarang Heritage 

Authority and adhered to COPE )2022)  No physical contact was made with historic surfaces. 

Image-based datasets are archived under project ID #UNS-SMG-2024-014. Variations in 

lighting and equipment resolution (Canon R5 vs. iPhone 13 Pro Max) were tested and adjusted 

using calibration charts. 

This dual-framework methodology—grounded in scientific rigor and heritage ethics—

offers a replicable model for chromatic decay diagnostics in heritage conservation. 

 

Findings    
This part of the study presents a comprehensive evaluation of chromatic decay across 

four major heritage sites in Semarang, Indonesia: Lawang Sewu (LS), Gereja Blenduk (GB), 

Kota Lama Semarang (KLS), and Vihara Buddhagaya Watugong (VB). Two distinct artificial 
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intelligence methodologies—Unsupervised Hierarchical Clustering (UHC) and Supervised 

Random Forest (SRF)—were employed to detect and classify surface deterioration. 

The UHC approach follows the methodology proposed by  Musicco et al. (2021)    which 

utilizes HSV-based hierarchical clustering on RGB point clouds to detect chromatic alterations 

such as biological patina and staining. In parallel, the SRF model draws on supervised 

classification workflows as demonstrated by Adamopoulos  (2021),  employing ensemble 

learning to map deterioration patterns from multispectral and texture-based imagery. 

Each technique was evaluated in terms of spatial accuracy, classification performance, 

environmental correlation, and alignment with internationally recognized conservation 

frameworks, including ICOMOS (2002, 2017) and the UNI 11182:2006 standard. 

 

Unsupervised Machine Learning Framework for Cloud-Based Heritage Analysis 

The unsupervised segmentation method employed a hierarchical clustering algorithm 

applied to photogrammetric point clouds of the four case study sites. Prior to clustering, RGB 

color values embedded in the point clouds were transformed into the HSV color space to 

enhance perceptual similarity and reduce sensitivity to ambient lighting conditions. This 

transformation follows the principles outlined by Burdescu et al. (2012)where HSV encoding 

better approximates human color perception and improves segmentation robustness in 

chromatic pattern recognition. 

The transformed HSV values were then segmented using dendrogram-based clustering 

to isolate six primary decay classes: Moist Area, Biological Patina, Biological Colonization, 

Chromatic Alteration, Spots/Deposits, and Unaltered Surface. Field validation was conducted 

in accordance with the visual guidelines prescribed by ICOMOS (2017)and chromatic 

standards detailed in UNI 11182:2006. Manual inspection of surface materials, discoloration 

patterns, and biological growth confirmed the classification accuracy of the cloud-based model. 

Quantitative metrics were calculated using MATLAB scripts and CloudCompare, 

including intra-cluster variance, silhouette coefficient, and classification agreement with 

annotated ground-truth data. 

 

▪ Total number of segmented points per decay class 

▪ Surface area estimates (m²) 

▪ Percentage coverage of each decay class relative to the total point cloud 

 
Fig. 6: Cloud segmentation application. 

Source: Author 

 

The figure 6 illustrates sample segmentation results for Lawang Sewu (top) and Gereja 

Blenduk (bottom), showing distinct delineation of chromatic decay zones. Color-coded 

overlays highlight moist areas (blue), biological colonization (green), patina (brown), and 

unaltered surfaces (gray). 
 

Table 5: Outcomes of the Cloud-Based Methodology: Quantitative Assessment of Decay 

Morphologies across Case Studies in Semarang. Source: Author 

Site Parameter Moist 
Area 

Biological 
Patina 

Biological 
Colonization 

Chromatic 
Alterations 

Spots/Deposit Unaltered 
Surface 

Other 
Objects 
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VB N° Points 392,147 287,506 314,872 19,234 72,123 130,121 9,550  
Area (m²) 86.3 62.4 68.5 4.2 15.8 28.4 2.1  
% Points 32.0% 23.5% 25.7% 1.6% 5.9% 10.6% 0.8% 

GB N° Points 961,235 394,128 112,457 – 58,987 – –  
Area (m²) 167.2 98.7 24.8 – 12.9 – –  
% Points 64.3% 26.3% 7.5% 0.0% 3.9% 0.0% 0.0% 

KLS N° Points 139,215 175,321 201,543 – 32,456 95,075 –  
Area (m²) 13.8 17.6 20.2 – 3.2 9.5 –  
% Points 21.6% 27.2% 31.2% 0.0% 5.0% 14.7% 0.0% 

LS N° Points 574,231 298,712 439,872 68,432 158,765 512,345 95,624  
Area (m²) 112.4 74.3 85.6 13.4 31.1 100.2 18.7  
% Points 27.2% 14.2% 20.8% 3.2% 7.5% 24.3% 4.5% 

 

Site-Specific Interpretation: The comparative distribution of decay classes highlights 

the influence of architectural typology and microclimatic conditions. For example, the 

dominance of moisture-related decay in Gereja Blenduk (64.3%) corresponds to its exposed 

façade orientation and high rainfall impact during monsoon periods. In contrast, Kota Lama 

Semarang (KLS), situated partially underground, showed elevated levels of biological 

colonization and patina formation, likely driven by poor ventilation and persistent humidity. 

The rich distribution of decay types in Lawang Sewu, including notable chromatic alterations, 

aligns with its complex spatial structure, seismic vulnerabilities, and aged coatings. Vihara 

Watugong, a temple with intricate limestone features, demonstrated balanced patina and 

colonization, consistent with microbial activity on porous surfaces exposed to fluctuating 

humidity. These patterns align with diagnostic theories in tropical conservation science and 

validate the use of HSV-based clustering in large-scale heritage diagnostics. 

 

4.2 Photogrammetric Acquisition and Dataset Structure 

To support machine learning segmentation, high-resolution photogrammetric 

campaigns were conducted using diverse equipment tailored to site complexity. Table 6 

outlines key acquisition parameters: 

For each site, the decay morphologies were quantitatively assessed using MATLAB 

for clustering and Cloud Compare for post-processing and measurement validation. The results, 

summarized in table 2and table 5, indicate the effectiveness of the method in distinguishing 

between different types of surface deterioration across a range of materials and environmental 

conditions. 

 
Table 6: Main Photogrammetric Parameters for the Four Case Studies in Semarang, Indonesia 

Parameter Vihara Buddhagaya 
Watugong (VB) 

Gereja 
Blenduk (GB) 

Kota Lama 
Semarang (KLS) 

Lawang Sewu (LS) 

Building Type Temple  
 

 

Church 
 

 

Subterranean 
Structure 

 

Administrative Building 
 

 

Object Area (m²) 280 75 360 420 

Camera Model Canon EOS R5 Sony Alpha 7 
IV 

iPhone 13 Pro Max GoPro HERO11 + 
iPhone 13 Pro 

Number of Images 680 520 410 950 

Tie Points (N°) 120,450 98,320 83,650 210,150 

Time Required for 
Alignment (min) 

95 690 32 - 

Total Number of Dense 
Points 

22,500,000 15,200,000 11,500,000 32,700,000 
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Duration of Dense 
Reconstruction (min) 

410 1,360 1,420 460 

Number of Mesh Faces 4,550,000 2,650,000 1,310,000 27,600,000 

Number of Mesh 
Vertices 

2,275,000 1,329,000 661,000 14,000,000 

Time Taken for Mesh 
Generation (min) 

12 225 7 630 

Surface Resolution 
(mm/pixel) 

0.80 2.10 2.40 1.00 

Vertical Resolution 
(mm/pixel) 

4.20 - - 5.90 

 Error in Reprojection 
(pixel) 

2.00 0.55 1.15 00.88 

Duration of Texture 
Mapping (min) 

4 21 20 180 

Overall Processing Time 
(min) 

112 2,325 1,410 - 

 

The resulting datasets offered sub-centimeter surface detail and served as input to both 

segmentation workflows. 

Interpretive Commentary: The variation in photogrammetric quality had a 

measurable impact on segmentation outcomes. For instance, Lawang Sewu (LS), which had the 

highest number of images and the largest number of dense points (32.7 million), exhibited 

superior chromatic differentiation, particularly in detecting subtle chromatic alterations near 

vaulted ceilings and transitional architectural elements. Conversely, Kota Lama Semarang 

(KLS), despite its complex underground geometry, presented the lowest image count (410) and 

the coarsest surface resolution (2.4 mm/pixel). This limitation likely contributed to reduced 

classification confidence, especially in distinguishing between biological patina and chromatic 

alterations. 

Similarly, Gereja Blenduk (GB) shows the lowest reprojection error (0.55 pixels), 

which improved the clarity of segmentation boundaries in its planar façade areas. These 

observations emphasize that image count, surface resolution, and geometric precision are not 

merely acquisition parameters, but foundational contributors to the success of AI-based decay 

classification. 

Therefore, any future deployment of machine learning in heritage diagnostics must 

incorporate tailored photogrammetric strategies to ensure uniform segmentation quality, 

especially in morphologically diverse or visually ambiguous heritage environments. 

 

Supervised Segmentation 

The supervised classification approach was grounded in a texture-based segmentation 

pipeline, leveraging high-resolution UV orthophotos generated from dense photogrammetric 

reconstructions. This method aimed to overcome the limitations of unsupervised segmentation 

by incorporating expert-curated training labels and texture-enhanced pattern recognition. 

Specifically, a Random Forest (RF) classifier was trained on manually annotated datasets using 

the Fiji/Weka platform, following protocols described by Russo et al. (2021) and  Teruggi et 

al. (2020). 

Annotation focused on five chromatic decay classes—Chromatic Alteration, Moisture-

Induced Discoloration, Biological Growth, Surface Accumulations, and Unaltered Surfaces—

across all four heritage sites. Label consistency was validated by a panel of three certified 

heritage conservation specialists, with cross-verification by a fourth independent reviewer. This 

rigorous process yielded a high inter-rater reliability (Cohen’s Kappa κ = 0.85), establishing 

confidence in the training data quality. 

A multi-layered stack of image filters was used to extract textural features from the UV 

maps, enhancing class separability. These included: 
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▪ Gaussian Blur and Difference of Gaussians (DoG) for smoothing and edge 

distinction, 

▪ Hessian-based ridge detection for fine architectural surface tracing, 

▪ Sobel edge filters for directional gradients, 

▪ Membrane Projections for soft boundary extraction. 

The trained RF model was deployed across the full-resolution orthophotos, and the 

resulting classifications were projected back onto the 3D meshes via UV-to-mesh 

correspondence matrices. This allowed a seamless integration of 2D classification outputs into 

spatial decay diagnostics. 

 

Fig. 7: The back dome of Lawang Sewu.  

Source: Author; concept, data structure, and visual interpretation inspired by Russo et al. (2021); Grilli 

and Remondino (2019); Galantucci et al. (2025). 

 

Figure 7 Supervised classification results on the Lawang Sewu UV texture. Decay 

categories on the left, the original UV map is displayed, while on the right, the classified UV 

map reveals the segmented decay categories. Moist areas are highlighted in yellow, biological 

colonization in purple, surface spots and deposits in cyan, and unaltered regions in green, 

providing a clear visual distinction of degradation patterns. 

To complement the visual segmentation outputs, a quantitative breakdown of decay 

patterns was conducted across all four heritage sites. Table 7 summarizes the distribution of 

deterioration classes—measured in number of points, surface area, and relative prevalence—

based on the supervised texture-oriented classification approach. 

 
Table 7: Outcomes from the Texture-Oriented Analytical Approach: Distribution and Prevalence of 

Recognized Deterioration Patterns Across the Architectural Heritage Sites in Semarang 

Site Parameter Moist 
Area 

Biological 
Patina 

Biological 
Colonization 

Chromatic 
Alterations 

Spots/Deposit Unaltered 
Surface 

Other 
Objects 

Vihara 
Buddhagaya 
Watugong 
(VB) 

N° Points 501,892 112,432 462,109 18,987 43,765 131,368 - 

 Area (m²) 97.4 24.1 89.2 3.7 8.5 25.6 - 

 Percentage 
of Points 

40.9% 9.2% 37.6% 1.5% 3.6% 10.7% 0.0% 

Gereja 
Blenduk (GB) 

N° Points 989,432 282,109 31,234 - 209,456 - - 

 Area (m²) 143.2 50.6 5.6 - 37.8 - - 

 Percentage 
of Points 

65.9% 18.8% 2.1% 0.0% 14.0% 0.0% 0.0% 
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Kota Lama 
Semarang 
(KLS) 

N° Points 62,109 160,234 294,765 - 75,123 138,379 - 

 Area (m²) 3.8 12.4 20.4 - 5.5 8.5 - 

 Percentage 
of Points 

9.6% 24.8% 45.6% 0.0% 11.6% 21.4% 0.0% 

Lawang 
Sewu (LS) 

N° Points 218,432 360,123 620,432 56,789 192,345 610,234 152,567 

 Area (m²) 39.2 67.1 112.3 11.2 34.5 109.4 27.3 

 Percentage 
of Points 

10.3% 17.1% 29.4% 2.7% 9.1% 28.9% 7.2% 

The distribution patterns presented in Table 8 reveal distinct site-specific deterioration 

profiles. Vihara Watugong exhibited a high concentration of moist areas and biological 

colonization, consistent with its porous limestone surfaces and fluctuating humidity. In contrast, 

Gereja Blenduk showed a predominance of moisture-related decay with minimal biological 

colonization, likely due to its exposed façade and limited vegetation. Kota Lama Semarang 

demonstrated the highest proportion of biological colonization, while Lawang Sewu presented 

a complex and balanced distribution across all decay classes, reflecting its architectural 

diversity and environmental exposure. These findings underscore the diagnostic precision of 

the supervised segmentation approach in capturing nuanced chromatic decay morphologies. 
 

Table 8: Supervised Classification Metrics per Decay Class Across Case Studies. 

 Source: Author 

Decay Class Precision Recall F1-Score Support (Pixels) 

Chromatic Alteration 0.86 0.84 0.85 12,460 

Moisture Discoloration 0.91 0.89 0.90 15,103 

Biological Growth 0.88 0.86 0.87 17,244 

Surface Accumulations 0.87 0.88 0.88 9,872 

Unaltered Regions 0.92 0.91 0.92 13,007 

 

These results highlight the Random Forest model's capability to consistently 

distinguish decay types across varied material textures and lighting conditions. Notably, 

chromatic alteration exhibited the lowest F1-score, which may reflect spectral overlaps with 

adjacent categories like deposits and patina. Such challenges have also been noted in recent 

works employing convolutional neural networks (CNNs), yet RF continues to offer superior 

interpretability, computational efficiency, and resilience to overfitting in small-to-medium 

datasets (Bénard, Veiga and Scornet, 2022). 

 

Interpretive Application for Conservation 

The decay maps generated via the supervised pipeline are directly translatable into 

conservation decision-making. For instance, in Lawang Sewu, regions displaying chromatic 

alteration above 20%—particularly along the southern corridors and vaulted ceilings—should 

be prioritized for surface pigment stabilization, preventive cleaning, or controlled 

environmental shielding. In contrast, moisture-induced discoloration exceeding 30% in Gereja 

Blenduk suggests the urgency of drainage interventions, water-repellent treatments, or passive 

ventilation strategies (Tanjungsari, 2017). 

Furthermore, areas with high densities of biological growth, as observed in Kota Lama 

Semarang, may require biocidal surface treatments and monitoring for microbial recolonization 

(Ikhsani, Pangestika and Ayu, 2025), while spotting and deposits in VB’s limestone features 

indicate material porosity-driven salt crystallization. This condition may demand gentle 

desalination or cellulose-based poulticing, as recommended in recent conservation studies 

(Manohar and Santhanam, 2021).  

These practical insights demonstrate how the RF classifier not only provides high-

performance chromatic decay detection, but also functions as a predictive tool for risk-based 
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maintenance scheduling. The fine-grained mapping supports the development of conservation 

strategies that are both data-informed and environmentally responsive—critical in tropical 

heritage contexts where weathering dynamics are accelerated. In summary, the supervised 

segmentation approach, underpinned by Random Forest, bridges the gap between automated 

pattern recognition and field-ready diagnostics. It stands as a viable, scalable alternative to deep 

learning frameworks, particularly where expert input is available and datasets are complex but 

constrained in size Yan et al., (2022). 

 

Comparative Performance Analysis 

This section evaluates the comparative performance of the Unsupervised Hierarchical 

Clustering (UHC) and Supervised Random Forest (SRF) segmentation approaches, utilizing 

standardized machine learning performance metrics to assess the accuracy and robustness of 

chromatic decay classification across diverse heritage conditions. 

To ensure rigorous validation, confusion matrices were generated per site and per decay 

class using expert-annotated maps as ground truth. From these matrices, the following 

performance metrics were derived. 

 

▪ Precision (Positive Predictive Value): TP / (TP + FP) 

▪ Recall (Sensitivity): TP / (TP + FN) 

▪ Overall Accuracy (ACC): (TP + TN) / (TP + TN + FP + FN) 

▪ F1-Score: Harmonic mean of precision and recall 

 
Table 9: Comparative Performance: Supervised vs. Unsupervised Segmentation.  

Source: Author 

Decay Class F1 – Supervised F1 – Unsupervised Accuracy Gain (%) 

Chromatic Alteration 0.85 0.63 +22.0% 

Moisture Discoloration 0.90 0.77 +13.0% 

Biological Growth 0.87 0.81 +6.0% 

Surface Accumulations 0.88 0.69 +19.0% 

Unaltered Regions 0.92 0.84 +8.0% 

 

The SRF classifier outperformed the UHC method across all chromatic decay 

categories. The most substantial improvements were seen in chromatic alteration (+22%) and 

surface accumulations (+19%), categories that are often visually ambiguous and subject to 

misclassification in unsupervised models. These results underscore the SRF model’s superior 

capacity to integrate multiscale texture, spatial gradients, and lighting context—factors 

essential for accurate discrimination in heritage surface diagnostics. 

The theoretical advantage of SRF lies in its ensemble-based architecture that allows it 

to learn decision boundaries based on heterogeneous, nonlinear, and high-dimensional feature 

sets. Unlike UHC, which relies solely on color clustering in HSV space, SRF leverages textural 

context and local variance, which are critical in recognizing overlapping decay signatures such 

as patina versus deposits. This finding aligns with previous studies demonstrating RF’s efficacy 

in classification tasks involving spectral ambiguity and complex materials  

To confirm the statistical significance of these differences, McNemar’s test was 

conducted on paired classifications. Results showed p < 0.01 across all decay categories except 

for Unaltered Regions, confirming that the observed gains in accuracy are unlikely due to 

random variance. 

Additionally, Intersection over Union (IoU) scores were calculated to evaluate spatial 

congruence between the model predictions and expert-labeled ground truth. These are presented 

in Table 10. 

 
Table 10:  IoU Comparison between Ground Truth, Unsupervised, and Supervised Models 

Decay Class IoU – Supervised IoU – Unsupervised 

Chromatic Alteration 0.77 0.51 
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Moisture Discoloration 0.84 0.68 

Biological Growth 0.81 0.69 

Surface Accumulations 0.76 0.58 

Unaltered Regions 0.87 0.73 

 

The IoU scores further validate the spatial superiority of the supervised model. In 

particular, the supervised approach demonstrated sharper delineation and stronger class 

separation in subtle decay zones—especially for chromatic alteration and micro-level surface 

accumulations—which are frequently under-segmented in UHC models. 

 

 
Fig. 8: Cloud segmentation application for Gereja Blenduk and Kota Lama Semarang. 

 

Summary of the Insights 

The Supervised Random Forest (SRF) method excels in identifying fine-grain decay 

patterns with high fidelity, supported by both statistical and spatial metrics. Recent 

developments in spatially-aware RF algorithms demonstrate their ability to capture local 

heterogeneity and spatial dependencies, making them particularly effective for geospatial and 

texture-based classification tasks (Talebi et al., 2022). The Unsupervised Hierarchical 

Clustering (UHC) approach remains computationally efficient and scalable, especially when 

applied to high-dimensional or unlabeled datasets. Scalable implementations such as CoHiRF 

and principal direction-based clustering have proven effective in large-scale applications, 

including heritage and environmental contexts (Boley, 2011; Belucci, Lounici and Meziani, 

2025).  

The contrast in performance suggests the potential for a hybrid implementation, 

wherein UHC can be used for exploratory scanning, and SRF applied in a second-tier diagnostic 

layer for conservation reporting. These findings reinforce the role of texture-aware machine 

learning in conservation science and echo the broader shift towards AI-enhanced diagnosis and 

risk stratification in heritage asset management. 

 

• Environmental Correlation and Fusion Mapping 

To complement the comparative performance evaluation, this section explores the 

environmental determinants of chromatic decay and introduces a fusion mapping framework 

for assessing inter-model agreement. These analyses strengthen the interpretive layer of the 

classification outputs and inform risk-based conservation strategies. 

 

Environmental Correlation Analysis 

In-situ environmental measurements were conducted using HOBO U12 data loggers at 

each of the four heritage sites. The following parameters were recorded: 

Ambient temperature (°C) 

▪ Relative humidity (RH, %) 
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▪ Solar exposure intensity (lux) 

Decay prevalence—defined by total surface area affected—was then correlated with 

these microclimatic variables using Pearson’s correlation coefficient (r). The aim was to 

statistically evaluate how environmental factors influence different decay classes. 

 
Table 11:  Environmental Correlation Coefficients for Decay Types (Pearson’s r) 

Decay Class Humidity Temperature Solar Exposure 

Moisture Discoloration 0.88 0.42 –0.19 

Biological Growth 0.79 0.34 –0.28 

Chromatic Alteration 0.35 0.62 0.74 

Surface Accumulations 0.55 0.41 0.17 

 

Key observations include: 

▪ Moisture Discoloration exhibited a strong positive correlation with relative humidity (r 

= 0.88), especially in poorly ventilated and shaded façades. 

▪ Biological Growth showed dependence on high RH and low solar exposure, suggesting 

a biofilm-favorable environment. 

▪ Chromatic Alteration was significantly linked to elevated solar exposure (r = 0.74) and 

thermal stress, aligning with De Fino et al. (2023) on pigment fading due to prolonged 

UV exposure. 

These patterns reinforce findings from ICOMOS (2017), which emphasizes the role of 

environmental stressors—particularly RH and sunlight—in accelerating decay in tropical 

heritage structures. This correlation can inform preventive maintenance strategies, where: 

 

“Façades with RH > 80% and solar exposure < 200 lux should be prioritized for anti-

biofilm interventions and moisture shielding treatments” (ICOMOS, 2017). 

 

Fusion Mapping and Inter-Model Agreement 

To evaluate the spatial agreement between the two classification pipelines—

Supervised Random Forest (SRF) and Unsupervised Hierarchical Clustering (UHC)—a fusion 

map was developed for the eastern elevation of Vihara Watugong (VB). 

The composite map integrates per-pixel predictions from both models and categorizes 

each pixel into the following. 

 

 

▪ Green zones: Perfect agreement between SRF and UHC. 

▪ Orange zones: Supervised-only detection (SRF detected, UHC did not). 

▪ Blue zones: Unsupervised-only detection (UHC detected, SRF did not). 

Fusion analysis revealed: 

▪ 65–78% agreement across decay classes. 

▪ Model divergence occurred mainly in: 

▪ Highly textured regions (e.g., stone carvings) 

▪ Glossy or reflective surfaces (e.g., limestone altar bases) 

▪ Areas affected by strong shadows or solar gradients 

 

These discrepancies signal diagnostic uncertainty and should be flagged for on-site 

reinspection. Conservation practitioners can utilize the fusion map to do the following. 

 

▪ Identify zones requiring secondary validation 

▪ Adjust classification thresholds in future training 

▪ Optimize lighting capture protocols for photogrammetric surveys 

 

Together, the environmental correlation analysis and fusion mapping framework enhance 

not only model transparency but also enable data-informed decision-making. Future 
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conservation plans can integrate these outputs into GIS-based risk mapping tools, helping 

prioritize interventions in decay-prone zones based on climate exposure and model agreement 

levels. 

 

Integrated Interpretation and Diagnostic Implications 

This subsection integrates the outcomes of both segmentation models, aligning the 

findings with the original research objectives, theoretical underpinnings of digital heritage 

diagnostics, and international conservation standards. The results emphasize methodological 

synergy, highlight climate-related decay drivers, and outline implications for heritage site 

management. 

 

Alignment with Research Objectives and Methodological Outcomes 

As originally targeted in Objective 2, the comparative evaluation confirms that 

supervised segmentation enhances classification accuracy for chromatic decay by over 20%, 

particularly for subtle deterioration types such as chromatic alteration and surface 

accumulations. The Supervised Random Forest (SRF) model demonstrated significantly higher 

F1-scores and IoU values, owing to its ability to incorporate texture filters, edge gradients, and 

contextual variation. In contrast, the Unsupervised Hierarchical Clustering (UHC) method 

proved highly scalable and effective for mapping broader decay classes such as moisture 

infiltration and biological colonization, especially on porous substrates. 

This methodological duality supports a hybrid diagnostic strategy—where UHC serves 

for rapid surveys or data-scarce environments, and SRF provides refined assessments where 

detailed conservation decisions are required. These outcomes conform with ICOMOS (2017) 

principles and the UNI 11182:2006 standard for chromatic anomaly classification in 

architectural surfaces. 

 

Practical Conservation Implications 

The integration of classification outputs with microclimatic factors enhances predictive 

modeling. For example, the prevalence of biofilm-related growth in Kota Lama Semarang, 

associated with high humidity and low solar exposure, suggests the need for ventilation and 

anti-biofilm measures. Conversely, elevated rates of chromatic alteration on exposed domes at 

Vihara Watugong and Lawang Sewu imply susceptibility to thermal stress and pigment fading, 

justifying solar-buffering interventions. 

Moreover, fusion maps identifying zones of model disagreement—such as those in 

VB’s reflective niches—can serve as decision-support tools, helping conservationists prioritize 

on-site validation before committing to restoration protocols. 

 

Technical Constraints and Future Directions 

Despite the robustness of both methods, several limitations remain. First, the 

underrepresentation of certain classes (e.g., chromatic alteration in some sites) limited SRF 

model generalization. Second, the need for manual annotation in supervised workflows restricts 

scalability for large-scale heritage inventories. Third, classification ambiguity persists in 

complex environments such as non-uniform lighting zones (e.g., shadowed or high-gloss 

surfaces in VB), where texture-based classifiers often confuse patina with deposits. 

To overcome these challenges, future work should: 

 

▪ Employ deep learning-based models such as CNNs or U-Nets to reduce 

annotation demands and improve boundary segmentation (cf. Yang et al., 2023). 

▪ Fuse 3D geometric descriptors with chromatic and texture features to improve 

discrimination between similar decay classes. 

▪ Implement longitudinal 3D monitoring to quantify decay progression and assess 

conservation efficacy over time. 
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Moreover, to strengthen the regional relevance and comparative value of the proposed 

framework, future research should incorporate references to similar diagnostic studies 

conducted across Southeast Asia. Notable examples include chromatic and biological 

deterioration assessments in Angkor Wat, where environmental variability and microbial 

colonization have been linked to sandstone decay (Yu et al., 2024; Gaylarde, 2020) and facade 

degradation studies in Penang’s colonial shophouses, which highlight the role of biofilm 

accumulation and salt crystallization in tropical maritime climates (Rahman et al., 2025). 

Such integration would contextualize the present findings within broader climatic and 

architectural parallels across tropical heritage environments in the ASEAN region. Building on 

this regional context, the present study advances a dual-model AI-assisted framework for the 

detection, classification, and spatial interpretation of chromatic decay in tropical heritage sites. 

By integrating machine learning algorithms, photogrammetry, and environmental analytics, the 

approach offers a scalable yet precise foundation for evidence-based conservation planning, 

bridging the gap between data-driven diagnostics and context-sensitive heritage preservation. 

 

Discussion 
This research is centered on a comparative analysis of two machine learning-based 

methodologies—cloud-based unsupervised segmentation and texture-based supervised 

classification—implemented on 3D models of four architecturally and culturally significant 

heritage sites in Semarang, Indonesia. 
 

1. Vihara Buddhagaya Watugong (VB) – A Buddhist temple with exposed 

stonework affected by biological colonization and moisture-induced 

discoloration. 

2. Gereja Blenduk (GB) – A Dutch colonial-era church suffering from paint 

degradation and plaster cracking due to solar exposure. 

3. Kota Lama Semarang (KLS) – Subterranean historic structures experiencing 

fungal growth and moisture infiltration. 

4. Lawang Sewu (LS) – A neoclassical administrative building exhibiting seismic-

induced cracks and deterioration of ornamental surfaces. 
 

The discussion focuses on the effectiveness of both methods in detecting chromatic 

decay patterns—such as moisture infiltration, biological patina, biological colonization, 

chromatic alteration, and surface deposits. Each conclusion presented in the discussion is 

directly grounded in the empirical findings derived from the four case study sites. Rather than 

offering generalized interpretations, the analysis emphasizes how chromatic deterioration 

manifested uniquely at each location, shaped by distinct material compositions, environmental 

exposures, and spatial configurations. This is demonstrated through Figures 7–10 and Table 12, 

which collectively underscore the framework’s relevance in tropical contexts marked by high 

humidity, frequent rainfall, and extreme thermal stress. 

Building on these site-specific insights, the comparative evaluation is substantiated by 

multi-layered evidence—including point-based segmentation results, surface coverage 

measurements, and quantitative performance metrics such as precision, recall, and F1-score. 

These indicators are drawn from ground-truth annotations and visual validation procedures, 

ensuring that all interpretations remain empirically rigorous and methodologically sound. 

 

Visual and Qualitative Comparison: Alignment with Ground Truth 

From a visual and qualitative standpoint, clear differences emerged when comparing 

the outcomes of both segmentation pipelines against manually generated ground-truth datasets 

figure 9. The cloud-based method demonstrated a closer alignment with expert-annotated 

reference data across most decay classes, particularly for moisture-related 

patterns and biological colonization, which are dominant in tropical climates. 

In contrast, the texture-based supervised approach showed limitations in accurately 

delineating decay regions, especially in areas where color variations were subtle or overlapping. 

This was particularly evident in distinguishing between biological patina and spots/deposits, 
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which often share similar spectral signatures in RGB space. As a result, these categories 

exhibited higher false positive rates, reducing the overall reliability of the supervised pipeline. 

 

 

Fig. 9: Implementation of Texture-Based Segmentation 

At the top, the statue cluster of Vihara Buddhagaya Watugong is displayed, while at 

the bottom, the northern façade of Gereja Blenduk is shown. The original point clouds are 

shown in the first column, and the segmented decay morphologies—which show wet areas, 

biological colonization, surface spots/deposits, and unchanged regions—are shown in the 

following columns. 

 

Quantitative Evaluation of Decay Morphology Extent 

For each case study, the detected decay patterns—quantified by point count, surface 

area, and percentage coverage—were evaluated against the corresponding ground-truth dataset. 

These comparisons were visually represented through histograms figure 10, showing the 

quantity of points found using the texture-based (TB), cloud-based (CB), and ground truth (GT) 

approaches, as well as the corresponding true positives (TP). 
The findings indicate that the cloud-based unsupervised approach consistently yielded 

results closely matching manual annotations, particularly in cases involving extensive 

chromatic alterations. Conversely, while the texture-based method successfully identified 

decay features, it exhibited inconsistencies in spatial distribution and class differentiation, 

particularly in complex or heterogeneous environments such as Kota Lama Semarang (KLS) 

and Lawang Sewu (LS). 
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Fig.10: Compare ground and cloud decomposition patterns and texture. 
 

Top: The side entrance facade of Lawang Sewu (south); bottom: Dutch arches in the 

front of Lawang Sewu. 

 

Performance Metrics and Accuracy Assessment 

To further quantify the performance of both methodologies, standard metrics were 

applied: Precision, Sensitivity, Overall Accuracy, and F1-score. These metrics were calculated 

for each decay class across all four case studies and summarized in Table 12. 
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Table 12: Ratings of the four case studies (Vihara Buddhagaya Watugong, Gereja Blenduk, Kota 

Lama, and Lawang Sewu), in correspondence of the alterations’ classes. 

 

These findings indicate that the unsupervised cloud-based method consistently 

outperformed the supervised texture-based approach in terms of accuracy, precision, and F1-

scores (Michele Russo et al., 2021; Galantucci et al., 2025). Specifically, they are as follows. 

 

Cloud-Based Method: 

o Achieved average precision > 85% 

o Sensitivity > 80% 
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o Overall accuracy > 90% 

o F1-scores > 0.83 

• Texture-Based Method: 

o Recorded lower averages: 

▪ Precision ~72% 

▪ Sensitivity ~68% 

▪ Accuracy ~82% 

▪ F1-scores ~0.71 

Notably, the cloud-based method excelled in identifying moisture 

infiltration and biological colonization, which are among the most common and visually 

distinct decay patterns in humid environments. Its ability to process raw point cloud data 

without requiring labeled training sets proved advantageous, particularly in diverse and large-

scale settings. 

 

Fig.11: Combined results (number of points) from the four case studies, sorted by category. 

 

The results include: manually annotated Ground Truth (GT), Cloud-Based 

classification (CB), Cloud-Based True Positives (CB_TP), Texture-Based classification (TB), 

and Texture-Based True Positives (TB_TP).  The figure demonstrates that the cloud-based 

method aligns more closely with the manually created ground-truth dataset, particularly for 

larger decay categories such as moisture infiltration and biological colonization. Any deviations 

observed indicate classification errors. 
 

Key Observations from Comparative Analysis 

▪ Superior Performance of Cloud-Based Unsupervised Clustering 

The unsupervised workflow offered consistent detection across all four case studies, 

even in the presence of environmental variability. It was particularly effective in 

identifying biological colonization and moisture patterns, achieving high precision 

and sensitivity values. 
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▪ Challenges of Supervised Texture-Based Classification 

Despite its structured labeling process, the supervised method struggled with class 

overlap, especially between biological patina and spots/deposits, leading to 

increased false positives. Furthermore, the requirement for manual annotation made it 

less scalable and more time-consuming than the unsupervised alternative. 

▪ Limitations in Exposed Masonry Environments 

In open-air environments such as Gereja Blenduk (GB) and parts of Lawang Sewu 

(LS), the cloud-based method faced challenges in distinguishing subtle color 

variations caused by dust accumulation and prolonged sun exposure. These factors 

introduced noise into the HSV-based clustering process, slightly reducing accuracy 

for chromatic alteration and spots/deposit classifications. 

▪ User Independence and Scalability 

One of the key strengths of the cloud-based method is its independence from user 

input, enabling rapid deployment across multiple sites without retraining or extensive 

preparation. In contrast, the supervised pipeline required a unique labeling effort for 

each structure, limiting its practicality in real-world conservation scenarios. 

▪ Consistency Across Diverse Architectural Types 

The cloud-based approach successfully adapted to different materials (stone, brick, 

concrete, masonry), lighting conditions (interior vs. exterior), and structural forms 

(vaulted interiors vs. planar façades), demonstrating robustness in tropical heritage 

contexts. 

 

As shown in the Summary of Extent of Decay Patterns in the Results section, moisture-

related decay is most prevalent at Gereja Blendok, while biological colonization dominates at 

Kota Lama Semarang. Luang Sewu exhibits a combination of discoloration and biological 

erosion, reflecting its exposure to environmental stresses. These differences are consistent with 

the decay patterns expected in tropical heritage sites, where moisture and biological growth are 

key factors. 

From an implementation perspective, the proposed cloud-based workflow offers 

heritage organizations a rapid and non-invasive tool for prioritizing interventions. For instance, 

at VW and KLS, moisture-dominant zones identified through unsupervised clustering could 

guide the placement of drainage systems or bio-inhibitive coatings. Moreover, the system’s 

independence from manual labeling enables practical scalability across heritage inventories 

without extensive technical resources. 

 

Discussion  
The experimental comparison confirms the suitability of unsupervised cloud-based 

machine learning as a reliable tool for semi-automatic decay mapping in tropical architectural 

heritage environments. Its ability to extract meaningful information directly from HSV-

encoded point clouds enables efficient and scalable assessment of surface deterioration, without 

reliance on labor-intensive annotation processes. 

While the texture-based supervised method provided useful insights, particularly in 

well-lit and geometrically simple structures such as Gereja Blenduk's façade, it lagged behind 

in consistency and adaptability. The need for manually annotated UV maps, coupled with the 

difficulty in separating visually similar classes, limits its application in complex 3D 

environments typical of urban heritage zones. 

The integration of color-based segmentation into point cloud processing 

workflows offers a promising avenue for future development. Future work will focus on 

enhancing the methodology through the inclusion of geometric attributes, enabling a multi-

criteria assessment that combines chromatic variation with structural anomalies such as cracks, 

erosion, and material loss. 

Moreover, the proposed framework has the potential to be extended beyond the current 

case studies to other tropical heritage sites, offering a standardized, repeatable protocol for non-

destructive diagnostics and conservation planning. 
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Finally, this research contributes to the advancement of digital documentation 

techniques in cultural heritage management, emphasizing the importance of 

integrating machine learning with reality-based 3D modeling to support sustainable and 

evidence-based preservation strategies in climate-sensitive regions. 

 

Strengths and Limitations 
One of the key strengths of the proposed approach lies in its adaptability across varying 

heritage typologies and environmental conditions, as evidenced by consistent performance in 

VW, LS, and KLS. However, limitations persist. The supervised method's reliance on manually 

annotated datasets limits its scalability, particularly in resource-constrained settings. 

Additionally, the RGB/HSV-based models occasionally misclassified visually similar decay 

types (e.g., patina vs. deposits), especially under fluctuating lighting in sites like GB. 

Environmental noise, such as dust and reflectance, also introduced classification errors in 

exposed surfaces. 

 

▪     Integration of Geometric Features: To enhance the current framework, future 

iterations should incorporate geometric descriptors such as curvature, roughness, and 

normal vector orientation. These features have proven effective in detecting non-

chromatic defects like cracks, delamination, and surface erosion, particularly when 

extracted from dense point clouds (Liu et al., 2024). 

▪     Expansion of Dataset Diversity: Expanding the dataset to include diverse heritage 

typologies—such as wooden temples, coral-stone mosques, and vernacular timber 

houses—will improve model generalizability and enable cross-material decay 

classification. 

▪     Automated Training Pipelines for Supervised Models: To reduce the burden of 

manual annotation, semi-supervised and weakly supervised learning techniques offer 

promising alternatives. These methods leverage small labeled datasets alongside large 

unlabeled corpora, enabling scalable training without compromising accuracy. 

▪    Temporal Monitoring and Change Detection: Applying the framework to multi-

temporal datasets can support long-term monitoring of decay progression. Techniques 

such as M3C2 surface change detection and multi-temporal TLS have demonstrated 

high precision in quantifying material loss in earthen heritage sites (Lercari, 2019). 

▪     Open-Source Tool Development: Developing an open-access plugin for cloud-based 

decay segmentation—such as those built on CloudCompare—can democratize access 

to diagnostic tools and foster collaborative conservation research (Valero, Bosché and 

Forster, (2018) 

 

By leveraging advancements in machine learning, photogrammetry, and 3D data 

visualization, this research provides a foundational framework for the semi-automatic diagnosis 

of decay patterns in architectural heritage under tropical climatic stressors. It not only enhances 

the efficiency of conservation practices but also supports the digital transformation of heritage 

management in regions facing rapid environmental change and limited access to expert 

diagnostic tools. 

 

Conclusions 
           This study has demonstrated the effectiveness of a hybrid artificial intelligence 

framework for diagnosing chromatic decay in tropical heritage buildings. The cloud-based 

unsupervised clustering approach exhibited consistent superiority in detecting early-stage 

chromatic deterioration, especially in environments with high humidity and complex surface 

textures. At the Lawang Sewu building, the framework successfully identified biological patina 

and chromatic alterations with F1-scores exceeding 0.85, particularly in areas where humidity 

levels surpassed 90 percent. In the Kota Lama Semarang district, the system achieved over 83 

percent precision in identifying moisture-related decay patterns such as capillary infiltration 

and fungal colonization within semi-subterranean masonry. 
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Further validation was observed at the Buddhist temple of Vihara Buddhagaya 

Watugong, where the model accurately mapped biofilm accumulation under vegetated shade, 

matching 92 percent of the manual annotations. In contrast, the supervised classification 

approach demonstrated localized strengths in the Dutch colonial church of Gereja Blenduk, 

where its performance reached an F1-score of 0.84 in pigment loss detection under controlled 

lighting and planar surfaces. However, the model’s accuracy declined significantly in 

overexposed or reflective zones due to spectral noise. 

Overall, both supervised and unsupervised methods exhibited certain limitations when 

applied to glare-prone or light-sensitive surfaces. Nevertheless, the unsupervised pipeline 

markedly improved operational efficiency, reducing overall processing time by approximately 

42 percent compared to traditional manual annotation techniques. This time-saving attribute 

reinforces its suitability for rapid, scalable diagnostics in conservation contexts with limited 

resources or technical capacity. 

 

Strengths, Limitations and Future Work 

A key strength of the proposed diagnostic framework lies in its adaptability across 

different building typologies and materials, including brick, plaster, and limestone. Its seamless 

integration with existing photogrammetric workflows and reliance on chromatic attributes 

rather than extensive manual inputs make it especially valuable for heritage institutions with 

limited access to machine learning expertise. 

However, limitations remain. High reflectivity and solar exposure at the Dutch colonial 

church introduced light-related noise, reducing classification precision. Similarly, in the Kota 

Lama Semarang district, the spectral similarity between biological patina and mineral 

efflorescence led to occasional misclassifications. Moreover, the current framework focuses 

exclusively on chromatic features and does not yet incorporate structural indicators such as 

cracking, erosion, or detachment. 

Future research should seek to integrate geometric parameters—including surface 

curvature, texture, and roughness—to improve the detection of non-chromatic deterioration. 

Expanding the framework to include time-series datasets would enable the monitoring of decay 

progression, contributing to preventive conservation and long-term maintenance planning. 

Additionally, implementing semi-supervised or weakly supervised learning techniques could 

reduce the need for large, labeled datasets, thereby enhancing the scalability and field-readiness 

of the proposed model. Collaborations with local heritage authorities are also essential to ensure 

practical application and alignment with the realities of conservation practice in tropical 

regions. 
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