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Abstract

Diagnosing chromatic decay—a key indicator of material
deterioration—in tropical architectural heritage presents a persistent
challenge in  conservation informatics. = Conventional  methods,
including  two-dimensional  imaging,  manual  inspection, and
photogrammetry, are often characterised by their labour-intensive
nature and lack of expediency when scaled up. Furthermore, these
methods are wusually insufficient in capturing the subtle chromatic
variations that occur across diverse materials. These limitations are
particularly  problematic in  humid tropical environments, where
biological patina, staining, and water-induced decay progress rapidly.
This study examines the development of a versatile diagnostic
framework designed explicitly for tropical heritage sites.

The research employs a dual machine learning methodology
applied to RGB-enhanced photogrammetric point clouds collected
from four heritage sites in Semarang, Indonesia. The initial approach
utilises  unsupervised hierarchical clustering on HSV-transformed
point clouds to detect chromatic variations. The second approach uses
a supervised Random Forest classifier, trained on manually annotated
UV maps, to detect specific decay types. Both methods were
evaluated against ground-truth data to assess their accuracy and
scalability in classifying biological patina, stains, and surface growths.

The findings suggest that the unsupervised clustering
algorithm exhibited superior performance, attaining a precision of
over 85% and an Fl-score of more than 0.83 across all sites. The
system’s  flexibility, independence from manual annotation, and
robustness to variable lighting and geometric conditions make it
particularly  effective  for  scalable diagnostics. The  proposed
framework provides a practical and transferable solution for
enhancing digital heritage conservation workflows in tropical regions.

Keywords: Heritage Decay; Chromatic Segmentation; Semarang; Deep
Learning; Point Cloud Analysis; Unsupervised Classification.
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Introduction

Material decay in heritage architecture—especially in tropical regions—is a persistent
and technically demanding issue, not only because of the accelerated rates of degradation driven
by high humidity, intense UV exposure, and biological colonization, but also due to the subtle
visual transformations that precede structural failure. Among these, chromatic decay—
manifested as discoloration, staining, or biological patina—presents one of the earliest and most
difficult-to-document signs of deterioration. In practice, traditional diagnostic approaches such
as manual inspection or basic 2D photogrammetry have proven insufficient, particularly when
applied to complex or large-scale heritage surfaces (Fino et al., 2022; Galantucci et al., 2023;
CIB, 2021). Their limitations are not merely practical but conceptual: they privilege structural
over chromatic information, often neglecting the visual textures that convey early warning signs
of material compromise.

Recent advances in digital documentation—particularly in 3D photogrammetry and
reality-based modeling—have introduced new opportunities for surface diagnostics.
Photogrammetric point clouds enriched with RGB data provide a multidimensional platform
that combines geometric fidelity with chromatic depth. When processed using machine
learning, these datasets can potentially identify and classify surface pathologies not visible to
the naked eye. Nevertheless, most current segmentation frameworks remain narrowly focused
on structural elements—walls, arches, columns—rather than the nuanced chromatic
transformations that signal decay (Hou and Li, 2023; Michele et al., 2021). Furthermore, while
deep learning offers high detection precision, it typically demands large annotated datasets that
are rarely available in heritage settings. Unsupervised techniques, by contrast, offer a viable
alternative but remain underutilized in tropical conservation contexts, where lighting variability
and complex surface topographies challenge conventional classification models (Aparicio et
al., 2025; Boffill et al., 2020).

In this context, this study seeks to bridge that methodological and conceptual gap by
proposing and evaluating a hybrid Al-based framework for diagnosing chromatic decay in
tropical heritage buildings. It examines two complementary approaches as follows.

e Anunsupervised hierarchical clustering algorithm applied to HSV-transformed
photogrammetric point clouds, and

e A supervised Random Forest classifier trained on UV-annotated texture maps.
These dual pipelines are designed to detect and classify decay typologies—such
as biological staining, moisture-induced discoloration, and chromatic surface
deposits—while minimizing reliance on expert annotation and maximizing
compatibility with field-acquired datasets.

The aim of this research is to develop and validate a scalable, semi-automated
framework for diagnosing chromatic decay in heritage structures using RGB-enhanced 3D
photogrammetry and artificial intelligence.

The specific objectives are:

e To generate high-resolution 3D point clouds enriched with RGB attributes suitable
for chromatic analysis;

e To implement and compare supervised and unsupervised machine learning
strategies for surface-level decay segmentation;

e To evaluate the diagnostic performance of each strategy in detecting subtle,
chromatic-based decay patterns under tropical environmental conditions.

Theoretical Framework

The diagnosis and mapping of material decay in architectural heritage are deeply rooted
in evolving theories of heritage value, digital conservation, and computational analysis.
According to Lerario (2022), heritage is not merely a physical object but a socially constructed
process that assigns meaning to build environments. This conceptualization positions heritage
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buildings as cultural texts, where decay is not only a material concern but also a threat to
historical continuity and identity.

Within this perspective, architectural heritage is framed as being both tangible and
interpretive. Van (2025) emphasizes that the conservation of built heritage requires a delicate
balance between preserving material authenticity and adaptation to environmental and
technological realities (Mahardika et al., 2024). As such, the diagnosis of decay, particularly
chromatic alterations, becomes a key component in safeguarding the heritage fabric, which
Rosina and Scazzosi (2019) defines as the visual and material expression of a building’s cultural
significance.

The notion of decay in heritage conservation has expanded from structural deformation
to include surface-level changes such as discoloration, staining, and patina. Fomina and Pinzari
(2024) argue that these chromatic transformations—although often overlooked—are
symptomatic of underlying environmental interactions, including moisture infiltration and
biological colonization. Therefore, any attempt at conservation must account for both
morphological and chromatic dimensions of degradation.

In this context, diagnostic mapping emerges as a critical process that visualizes and
categorizes decay patterns. As elaborated by Letellier (2016), diagnostic mapping involves
integrating data from multiple sources—photographs, surveys, and 3D models—to construct a
holistic understanding of material deterioration. In recent years, this process has been
increasingly enhanced by digital technologies, particularly reality-based 3D modeling such as
photogrammetric point clouds.

Reality-based modeling provides a geometrically accurate and visually rich
representation of heritage structures. As Gherardini and Leali (2019) explain, these models
allow researchers to document surface conditions with high fidelity. However, without
appropriate computational tools, such models often remain underutilized in decay detection.
This has led to the rise of semantic segmentation, which Betsas et al. (2025) define as the
process of labeling parts of a 3D dataset based on specific features such as color, geometry, or
texture.

Deep learning offers a powerful computational approach to segmentation and
classification. According to Mienye and Swart (2024), deep learning involves training
multilayered neural networks to extract complex patterns from high-dimensional data. When
applied to heritage diagnostics, deep learning can identify subtle chromatic decay indicators
that are difficult to detect visually or geometrically. Adamopoulos (2021) demonstrate how
convolutional neural networks (CNNs) applied to UV-mapped meshes can recognize
discoloration patterns on sculptural surfaces with high accuracy.

Nevertheless, reliance on supervised deep learning alone presents limitations in
heritage contexts. Annotated training datasets are rarely available, and architectural surfaces
exhibit high variability in lighting and material response. This leads scholars like Jadhav (2025)
to advocate for hybrid models that combine supervised and unsupervised learning. In such
models, unsupervised classification—particularly hierarchical clustering—can group similar
chromatic patterns without prior labeling, while Random Forest classifiers refine the
segmentation using annotated examples.

These concepts converge within the emerging field of conservation informatics, which
Forte (2012) define as the integration of computational methods into the documentation,
monitoring, and management of cultural heritage. Conservation informatics bridges the gap
between heritage theory and digital practice, allowing for the development of intelligent,
scalable systems for decay diagnosis.

In summary, the theoretical foundation of this study rests on a multi-layered integration
of heritage value theory, material pathology, digital documentation, and machine learning.
Heritage is treated not as a static entity, but as a dynamic system vulnerable to environmental
change. Diagnosing chromatic decay within this framework requires tools that can process both
geometry and radiometry, enabling accurate segmentation and interpretation of complex
heritage surfaces. This theoretical position directly informs the methodological design of this
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research, which integrates photogrammetry, Al classification, and diagnostic mapping within a
conservation-centered agenda.

Review of Literature

Contemporary research on heritage diagnostics has increasingly embraced machine
learning and 3D data processing, yet challenges persist—particularly in the detection of
chromatic surface decay, which remains underrepresented in segmentation literature. As De
Fino et al. (2018) argue, traditional diagnostic practices such as manual surveys and visual
inspection lack precision and scalability, especially when applied to large-scale or
geometrically complex heritage structures. These methods often fail to identify surface-level
chromatic variations, such as discoloration, staining, or patina, which are critical early
indicators of material deterioration.

In this connect ion, Galantucci and Fatiguso (2023) emphasize that the integration of
digital photogrammetry and 3D point clouds has provided conservationists with new tools for
documentation and analysis. However, as Aparicio et al., (2019) point out, these datasets are
often used solely for geometric modeling, rather than for interpreting surface pathology. While
Sanchez-Aparicio et al., (2023) highlight the potential of RGB-enhanced point clouds in
detecting decay, most existing workflows remain optimized for the segmentation of
architectural features—walls, arches, floors—rather than subtle chromatic transformations.

According to Russo et al. (2021), and Teruggi et al. (2020), the segmentation of 3D
data has largely relied on either edge-based or region-based clustering, with a preference for
model-driven algorithms such as RANSAC. Although these techniques achieve high geometric
accuracy, they are inherently insensitive to color-based anomalies unless specifically
augmented. Hou and Li (2023) further note that surface segmentation in heritage datasets often
prioritizes shape over spectral attributes, thereby overlooking chromatic decay as a meaningful
diagnostic parameter. Muller et al. (2014) show that region-growing algorithms can be adapted
to chromatic domains, but only when paired with sophisticated radiometric filtering
strategies—a step not widely implemented in heritage practice.

Machine learning has emerged as a transformative force in heritage diagnostics.
Random Forest (RF) models, as applied by Wegner and Schindler (2016) have been
instrumental in classifying architectural components within urban-scale point clouds. Betsas et
al. (2025) demonstrate that RF classifiers can distinguish between material typologies with
reasonable accuracy. However, despite their utility, RF models require annotated datasets that
are often unavailable in tropical heritage environments, especially those with scarce historical
documentation. Moreover, RF segmentation pipelines are prone to overfitting when trained on
limited or inconsistent texture data (Anagnostopoulos et al., 2017; Kamnitsas and Glocker,
2021).

Deep learning techniques, particularly convolutional neural networks (CNNs), offer
new avenues for pattern recognition in heritage surfaces. Adamopoulos (2021) describe the
application of CNNs to textured 3D meshes, enabling accurate identification of visual
deterioration on sculptural elements. Jiang et al. (2023) extend this logic to metal surfaces,
detecting corrosion patterns such as rust and flaking. However, these approaches rely heavily
on large, curated datasets and controlled lighting conditions—luxuries rarely available in situ.
Furthermore, most deep learning frameworks have not been adapted for field-based tropical
heritage conservation, where environmental unpredictability and chromatic variability are high.

Within Southeast Asia, the literature remains limited. Sardiyarso et al. (2023) explores
environmental deterioration in Javanese Buddhist temples but focuses primarily on material
loss, not color change. Amin and Sasmito (2023) report on chromatic and structural damage to
colonial churches in Semarang but do not propose diagnostic frameworks. Sudikno and Surjono
(2017) highlight decay in Kota Lama’s underground structures, yet their study remains
descriptive, lacking predictive or analytical methodologies. These examples confirm that
regional research has yet to embrace Al-assisted chromatic segmentation or integrate 3D RGB
point cloud processing for decay diagnostics.
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Despite growing efforts to map heritage damage using digital tools, most segmentation
studies either ignore chromatic indicators or treat them as secondary variables. Lombillo et al.
(2017) call for a paradigm shift—one that treats surface color as a primary data layer, not a by-
product of texture mapping. Guerra and Galantucci, (2020) and Boccarusso et al. (2020) caution
that without radiometric segmentation, critical decay typologies like biological staining or
water infiltration will remain undocumented in 3D diagnostic workflows.

Moreover, recent reviews by Patankar et al. (2021), Razia Sulthana et al. (2023), and
Hou and Li (2023) suggest that hybrid segmentation—combining supervised and unsupervised
learning—may provide a more adaptive and scalable framework for chromatic decay detection.
Yet, no study to date has implemented such a hybrid approach specifically within tropical
heritage environments, nor has any systematically evaluated its performance across multiple
architectural case studies with RGB point cloud data.

Synthesis and Identification of the Gap

While international studies have explored the application of machine learning to
geometric segmentation in heritage contexts, very few have targeted chromatic-based decay
analysis using RGB-enriched 3D datasets. Deep learning remains promising yet data-intensive,
and current frameworks are poorly suited to field conditions in Southeast Asia. No existing
study combines hierarchical clustering and supervised Random Forest modeling on tropical
heritage sites using integrated photogrammetric datasets.

This gap—between radiometric potential and practical implementation—justifies this
research, which proposes and evaluates a hybrid Al framework to classify and map chromatic
decay using unsupervised and supervised methods within point cloud environments.

Research Methodology

This study adopts a multi-scalar case study methodology grounded in conservation
informatics and digital heritage diagnostics. The research design integrates spatial data science,
photogrammetric modeling, and artificial intelligence to assess chromatic decay in tropical
heritage buildings. The methodological framework unfolds in three interconnected stages: (1)
spatial data acquisition and pre-processing, (2) chromatic segmentation using supervised and
unsupervised machine learning models, and (3) validation and performance benchmarking.
These phases were conducted across four heritage sites in Semarang, Indonesia, selected for
their typological, material, and environmental diversity.

¢ Site Context and Architectural Characterization

Four buildings were selected to represent distinct eras and typologies of architectural
heritage of Semarang. Each case provides specific material and climatic challenges relevant to
chromatic decay analysis.

= (a) Lawang Sewu (LS)
A neoclassical complex constructed in the early 20th century, LS includes vaulted
interiors with decorative plasterwork. The southern corridor was selected for analysis
due to evident staining, cracking, and biological patina (Gbran, 2023; Gbran and Sari,
2023)

= (b) Vihara Buddhagaya Watugong (VW)
A 20th-century Buddhist temple built from concrete and limestone, VW exhibits
widespread biological colonization due to high ambient humidity. Fieldwork focused
on the eastern fagade, where discoloration from algae and lichen was most visible
(Pigawati, 2017).

= (c) Gereja Blenduk (GB)
An 18th-century Dutch colonial church with red-brick and stucco finishes, GB suffers
from efflorescence, pigment loss, and surface cracking. Data were acquired on the
northern elevation, exposed to rainfall and direct sunlight (Amin and Sasmito, 2023).
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= (d) Kota Lama Semarang (KLS)
Dating from the 17th—19th centuries, the KLS district contains semi-buried stone
structures affected by capillary moisture and salt damage. The studied segment was
the western facade of the former Stadthuys building (Tanjungsari and Antariksa,
2018; Rukayah et al., 2023).

These sites were selected to ensure representative variability in material performance,
light exposure, and degradation patterns. Figure 2 presents a map of the locations of the
buildings within the urban context of Semarang.

¢ Data Collection and Photogrammetric Imaging

The first stage of the methodology employed a suite of non-invasive data acquisition
tools designed to capture high-fidelity 3D spatial and chromatic information:
Imaging and Sensor Equipment used are as follows:

= Canon EOS R5 (8160 x 5440 px) with EF 24-70 mm and 70-200 mm lenses
= Sony Alpha 7 IV (6000 x 4000 px)

= iPhone 13 Pro Max (4032 x 3024 px, LiDAR enabled)

=  GoPro HEROI11 Black

= iPad Air 5 and Samsung Galaxy S22 Ultra (supportive metadata and control)

To ensure accurate chromatic calibration across all imaging sessions, a X-Rite
ColorChecker Classic chart was used during each photogrammetric campaign. This standard
allowed for uniform color referencing and correction during post-processing (Adobe
Lightroom).

Field Protocol

Surveys were conducted between January and March 2024, under consistent daylight
between 10:00-15:00. Image overlap was maintained at 78—85%. Acquisition was supported
by carbon fiber poles (up to 8 m) and Manfrotto BeFree GT tripods. All campaigns were
approved by the Semarang Heritage Authority (Permit ID: UNS-SMG-2024-014).

Table 1: Summary of Photogrammetric Imaging Parameters per Site.
Source: Author.

Site Code | Building Name No. of Images | Season | Overlap (%) | GSD (mmipx)
LS Lawang Sewu 356 Dry 80% 2.3
GB Gereja Blenduk 290 Dry 85% 1.2
VW Vihara Watugong 312 Wet 80% 0.8
KLS Kota Lama Semarang | 362 Wet 75% 0.5

As shown in the table 1, image acquisition maintained 78-85% overlap and sub-
centimeter GSD, consistent with photogrammetric standards for heritage documentation (Turco
and Rinaudo, 2017; Gbran and Sari, 2024). Processing was conducted using Agisoft Metashape
and validated in RealityCapture (Friml et al., 2014), with radiometric calibration in Adobe
Lightroom (Barsanti, Guidi and De Luca, 2017) and spatial filtering in CloudCompare (Menna
and Remondino, 2017).

Chromatic Segmentation Framework
The segmentation phase applied a dual-path approach as follows.

e Unsupervised Learning: Hierarchical clustering on HSV-encoded point clouds using
Ward’s method for spatial consistency. Color space transformation followed the
perceptual model by Zhang (2021)

o Supervised Classification: Random Forest classifier trained on manually annotated UV
maps using Fiji Image] and Weka plugin.
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Manual annotations were produced independently by three certified conservation
experts. In cases of disagreement regarding decay classification, a consensus protocol was
followed: overlapping zones were reviewed collectively and resolved by majority agreement.
An independent reviewer verified 20% of the annotations to ensure consistency, resulting in an
inter-rater reliability of Cohen’s Kappa = 0.85.

Processing was conducted on a high-performance workstation: Intel Core 19-13900K,
64GB DDRS5 RAM, NVIDIA RTX 4090 GPU, running Windows 11 Pro. The average dataset
size per model exceeded 8 GB, and texture maps ranged between 300-600 MB each. To manage
the data load, all image sets and point clouds were compressed and archived in LZW and LAZ
formats, respectively, and batch-processed using automated scripts.

Validation, Limitations, and Integration

Model performance was assessed via precision, recall, and F1-score metrics. While
specific values are detailed in the Results section, preliminary validation showed average
classification accuracy exceeding 90% across the datasets. Ground-truth data were constructed
from annotated training sets and used to benchmark each model’s response to varying chromatic
decay morphologies under tropical lighting conditions.

Environmental metadata collected using HOBO U12 sensors (RH: 75-94%, Temp: 28—
34°C) informed the classification logic and decay context. Ethical compliance followed
(COPE, 2022; Madole, 2020; Icomos et al., 2002) protocols.

The models showed strong adaptability across heterogeneous surfaces, but certain
limitations were identified: supervised models required labor-intensive annotation and were
sensitive to texture irregularities, while unsupervised clustering sometimes misclassified highly
reflective zones under bright conditions. These constraints were mitigated by cross-validation
and environmental context analysis.

This refined methodology ensures replicability, analytical depth, and alignment with
international conservation standards, contributing to scalable Al-powered frameworks for
heritage diagnostics in tropical environments.
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Fig.1: Hybrid segmentation workflow integrating RGB-HSV clustering and UV-based supervised
learning. Source: Author, Data: Golovkina ef al., 2024; Busin, Vandenbroucke and Macaire, 2009
Case Study
Diagnostic Application of the Methodology

Building upon the multi-scalar methodological framework previously outlined, this
section presents the diagnostic implementation of chromatic decay analysis across four heritage
sites in Semarang, Indonesia. The selected buildings—Lawang Sewu (LS), Vihara Buddhagaya
Watugong (VW), Gereja Blenduk (GB), and Kota Lama Semarang (KLS)—were strategically
chosen to reflect architectural diversity, historical relevance, material heterogeneity, and
varying environmental exposure. Their spatial and structural characteristics, along with the
justification for their inclusion, are discussed in the site context section, where specific decay
typologies are linked to individual facades and architectural elements.

This section marks a shift from methodological development to applied analysis,
focusing on the classification of chromatic deterioration using a dual segmentation strategy: (i)
unsupervised hierarchical clustering applied to HSV-transformed 3D point clouds, and (ii)
supervised Random Forest classification based on UV-mapped texture data. Both approaches
were calibrated for the climatic and material complexities of tropical heritage environments and
tested across all four case studies.

Figure 2 illustrates the spatial distribution and architectural typologies of the four study
sites. Table 2 summarizes the 3D reconstruction quality metrics, including model resolution
and processing time, which underpin the analytical reliability of the subsequent results.
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Fig. 2: Locations and architectural typologies of the four selected case studies in Semarang
Top left: Lawang Sewu main facade (Semarang, Indonesia); top right: Gereja Blenduk front view
(Semarang, Indonesia). Bottom left: Vihara Buddhagaya Watugong statue cluster; bottom right: Kota
Lama Semarang subterranean corridor.
Source: Author, google map.

Model Resolution, Accuracy, and Pre-processing

All models were reconstructed following standard Structure-from-Motion workflows
(Galantucci and Fatiguso, 2023). The average ground sampling distance (GSD) ranged from
0.5 mm/pixel to 2.5 mm/pixel. Geometric alignment errors were minimized using bundle
adjustment and coded targets.

Noise filtering and color calibration were performed in Adobe Lightroom prior to
processing. The output models were cleaned in Cloud Compare to remove outliers and
resampled for consistency. Table 2 provides a breakdown of the photogrammetric performance
indicators per site.

Table 2: 3D Reconstruction Quality Indicators
Source: Author

Site | GSD (mm/px) | Model Accuracy | Processing Time (hrs) | Software Used
VW 0.8 +1.5mm 3.5 Metashape + RC
GB 1.2 2.0 mm 4.2 Metashape
KLS 05 1.1 mm 3.9 Metashape
LS 2.3 3.0 mm 3.0 Metashape

Chromatic Segmentation and Diagnostic Analysis.

Following the acquisition and 3D reconstruction of the case study sites, this section
details the analytical procedures applied to detect, classify, and validate patterns of chromatic
deterioration across the surveyed heritage surfaces. The research employs a dual-track strategy
combining (i) an unsupervised learning model applied to point clouds and (ii) a supervised
texture-based classification of UV maps, with both workflows calibrated to the material and
lighting conditions of tropical environments. This approach ensures a robust assessment of
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surface pathologies while maintaining replicability and alignment with international heritage
diagnostics standards (ICOMOS, 2017; UNI 11182:20006).

Recent studies have demonstrated the effectiveness of hierarchical clustering on HSV-
encoded point clouds for detecting chromatic alterations such as biological patina and staining,
particularly in irregular masonry surfaces (Musicco et al., 2021). In parallel, supervised
segmentation of UV-textured meshes using Random Forest classifiers has proven reliable for
mapping surface decay in complex architectural geometries (Grilli et al., 2018). Figure 3
presents the complete segmentation workflow, comparing the supervised and unsupervised
methodologies used in this study.

(&=, Y
loud ; 2

Point Cloud UV Texture Map
(3D) (2D)
CES
A
b
- %]
!
RGB to HSV Feature
Conversion extraction
¥
HIERARCHICAL | § Random
CLUSTERING | | § Forest
Classification
-
“Denarogram 1"
Cutting
=i )
SEGMENTED CLASSIFIED
CLUSTERS TEXTURE MAP
fimn

—:, DETECTEDAiLTERATIONS € J '
T (¥ FYWE 1

Fig. 3: Comparative methodological workflow showing the dual segmentation approach for chromatic
decay detection using supervised Random Forest classification on UV maps and unsupervised
hierarchical clustering on HSV-transformed point clouds. The process is illustrated with examples of
applications at one of the study sites, the Lawang Sewu Building.

Source: Author

Unsupervised Learning on RGB-Encoded Point Clouds

The first diagnostic approach utilizes an unsupervised hierarchical clustering algorithm
to analyze dense point clouds enriched with RGB data. Prior to clustering, the color model is
transformed from RGB to HSV to enhance perceptual coherence under variable lighting
conditions (Gonzalez and Woods, 2018; Nacher and Akutsu, 2013; Dzeroski, 2013). The
transformation equations used are detailed below:

Let:
Crax = max (R, G,B)
Cin = min (R, G, B)
A = Crax — Crin
Then:

1
H = cos _1(5 [R=G)+ (R - B)]/\/(R —G)?+ (R—B)(G—B))

S=1 -min(R, G, B)

" R+G+B

1
V=3(R+G+B)
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The clustering process applies Ward’s minimum variance method to agglomerate data
points, minimizing intra-cluster dissimilarity (Murtagh and Legendre, 2015; Grilli, Menna and
Remondino, 2017)The inter-cluster distance d(r,s)d(r,s) is calculated as:

2n,ng

d(T, S) = ( ) ' \/(xr - xs)z + (yr - ys)z + (Zr - Zs)z

n, + ng

Where n, and ng are the number of points in clusters r and s respectively,
(%, Y 21) (x5, Vs, Zs) denote the centroids of the clusters.

All computations were executed using a workstation equipped with an Intel Core 19-
13900K processor, 64GB DDR5 RAM, NVIDIA RTX 4090 GPU, and Windows 11 Pro OS,
ensuring high-performance segmentation and rendering speed during batch clustering and
visualization.The resulting dendrogram figure 4 allowed for segmentation into six distinct
chromatic classes.

Hierarchical Clustering Dendrog of Decay Mor p
(Cut at Six Clusters Using Ward's Method)

Cluster 6 Unaltered Surface

Point Cloud Samples

Fig.4: Dendrogram visualization generated from hierarchical clustering on HSV-encoded point clouds,
showing six discrete chromatic decay clusters detected across the case study surfaces.
Source: Author
Consider Table 3, which shows the distribution of points across clusters, each of
which reflects a specific degradation pattern

Table 3: Distribution of point cloud data among six identified chromatic decay clusters derived from
hierarchical clustering. Each cluster corresponds to a specific decay morphology.
Source: Author, an idea from: (Musicco ef al., 2021)

Cluster | Description Number of Points
1 Moist Area 48
2 Biological Patina 50
3 Biological Colonization | 33
4 Chromatic Alteration 28
5 Spots / Deposits 25
6 Unaltered Surface 16

Quantitative diagnostics included surface area measurements, coverage ratios, and
morphological visualization of each cluster. During data acquisition, environmental variables
were recorded using HOBO U12 data loggers at each site, showing relative humidity levels
between 75-94% and ambient temperatures ranging from 28°C to 34°C. These climatic
conditions informed the decay classification logic.
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Supervised Classification of UV Texture Maps

In parallel, a supervised classification workflow was implemented on UV-mapped
orthophotos derived from the same 3D reconstructions. This pipeline, inspired by Russo et al.
(2021) and Teruggi et al. (2020), uses a Random Forest classifier to perform pixel-wise
segmentation of decay patterns.

Preprocessing and Feature Engineering: High-resolution textures were preprocessed
using Adobe Lightroom for radiometric calibration and Fiji ImagelJ for contrast balancing and
denoising. Advanced denoising was performed using the Noise2Void (N2V) plugin, a deep
learning—based tool integrated into Fiji for content-aware noise reduction (Krull, Buchholz and
Jug, 2019). Key features such as edge sharpness, spatial coherence, and color variance were
extracted to train the classifier, following established protocols in biomedical and heritage
image analysis (Carreras et al., 2017).

Manual Annotation and Ground-Truthing: Manual annotations were conducted using
the Trainable Weka Segmentation plugin within Fiji, which combines machine learning
classifiers (e.g., Random Forest) with pixel-based feature extraction(Microimaging, 2022).
Annotations were performed independently by three certified conservation experts and cross-
validated by a fourth reviewer. Inter-rater reliability was assessed using Cohen’s Kappa,
yielding a score of k = 0.85, indicating strong agreement.

The decay categories annotated include the following.

Chromatic Alteration
Moisture-Induced Discoloration
Biological Growth

Surface Accumulations
Unaltered Regions

A representative annotation interface is shown in the figure 5, with training samples marked
across various degradation zones are as follows.

Labels
Add to Bac kground
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1(25

Labels

Add to Background
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Fig. 5: A systematic illustration of the manual annotation process provided for selected sample
datasets, corresponding to predefined surface classifications—including moisture-affected zones,
biological patina, biological colonization, and intact (unaltered) surfaces—displayed in the right-side
panel.

Source: Author

The figure illustrates the user interface of the Fiji software platform, highlighting its
integration with the Tweka Segmentation plugin to perform supervised classification tasks
Once trained, the model achieved the following classification metrics:

Precision: 0.89

Recall: 0.87

F1-Score: 0.88

Overall Accuracy: 91.3%

The classified UV maps were then reprojected onto the textured mesh models to
correlate the pixel-level results with spatial context. This allowed for a comparative assessment
with the unsupervised clustering results from fist Section above.

Integration, Validation and Performance Benchmarking

To evaluate the robustness of both segmentation approaches, outputs were compared
against ground-truth datasets (generated from manual annotation). A side-by-side comparison
was conducted using Table 5 (Results Section), showing superior performance by the
supervised model in detecting nuanced chromatic alterations under complex lighting.

Validation metrics were computed based on per-class confusion matrices, with special
attention to false positive rates in areas affected by specular reflections. The methodological
pipeline was benchmarked for processing time, replicability, and model generalizability,
ensuring future adaptation across different tropical sites. See table 4 summarizes the complete
methodological pipeline and validation metrics.

Table 4: Summary of the methodological framework, detailing acquisition steps, processing methods,
segmentation models, and evaluation metrics for chromatic decay detection.
Source: Author

Step Description

Data Acquisition Photogrammetry + TLS to generate 3D point clouds and textured meshes
Color Space Conversion | RGB to HSV transformation for consistency

Clustering Hierarchical clustering applied to HSV-encoded point clouds

Supervised Learning Random Forest trained on UV-annotated datasets

Validation Ground-truthing via expert annotation; metrics include F1, Precision, Recall

Ethical and Technical Considerations

All data acquisition was performed under permission from the Semarang Heritage
Authority and adhered to COPE (2022) No physical contact was made with historic surfaces.
Image-based datasets are archived under project ID #UNS-SMG-2024-014. Variations in
lighting and equipment resolution (Canon R5 vs. iPhone 13 Pro Max) were tested and adjusted
using calibration charts.

This dual-framework methodology—grounded in scientific rigor and heritage ethics—
offers a replicable model for chromatic decay diagnostics in heritage conservation.

Findings

This part of the study presents a comprehensive evaluation of chromatic decay across
four major heritage sites in Semarang, Indonesia: Lawang Sewu (LS), Gereja Blenduk (GB),
Kota Lama Semarang (KLS), and Vihara Buddhagaya Watugong (VB). Two distinct artificial
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intelligence methodologies—Unsupervised Hierarchical Clustering (UHC) and Supervised
Random Forest (SRF)—were employed to detect and classify surface deterioration.

The UHC approach follows the methodology proposed by Musicco et al. (2021) which
utilizes HSV-based hierarchical clustering on RGB point clouds to detect chromatic alterations
such as biological patina and staining. In parallel, the SRF model draws on supervised
classification workflows as demonstrated by Adamopoulos (2021), employing ensemble
learning to map deterioration patterns from multispectral and texture-based imagery.

Each technique was evaluated in terms of spatial accuracy, classification performance,
environmental correlation, and alignment with internationally recognized conservation
frameworks, including ICOMOS (2002, 2017) and the UNI 11182:2006 standard.

Unsupervised Machine Learning Framework for Cloud-Based Heritage Analysis

The unsupervised segmentation method employed a hierarchical clustering algorithm
applied to photogrammetric point clouds of the four case study sites. Prior to clustering, RGB
color values embedded in the point clouds were transformed into the HSV color space to
enhance perceptual similarity and reduce sensitivity to ambient lighting conditions. This
transformation follows the principles outlined by Burdescu et al. (2012)where HSV encoding
better approximates human color perception and improves segmentation robustness in
chromatic pattern recognition.

The transformed HSV values were then segmented using dendrogram-based clustering
to isolate six primary decay classes: Moist Area, Biological Patina, Biological Colonization,
Chromatic Alteration, Spots/Deposits, and Unaltered Surface. Field validation was conducted
in accordance with the visual guidelines prescribed by ICOMOS (2017)and chromatic
standards detailed in UNI 11182:2006. Manual inspection of surface materials, discoloration
patterns, and biological growth confirmed the classification accuracy of the cloud-based model.

Quantitative metrics were calculated using MATLAB scripts and CloudCompare,
including intra-cluster variance, silhouette coefficient, and classification agreement with
annotated ground-truth data.

= Total number of segmented points per decay class
= Surface area estimates (m?)
= Percentage coverage of each decay class relative to the total point cloud

moist area iological patina :biological colonization : spots/deposit : unaltered surface
...................... feososnnsnnnsnnnnnsnnnnssdosnnnannnsnsnnnnrnnsnnafossnnsnsnssnsnsnsssnnnsnnnnfesernssrnrnsnsnsannsnnnsdusnsnsssnnnnnsnntnsnns

NS - - P dias willmy - : L

Fig. 6: Cloud segmentation application.
Source: Author

The figure 6 illustrates sample segmentation results for Lawang Sewu (top) and Gereja
Blenduk (bottom), showing distinct delineation of chromatic decay zones. Color-coded
overlays highlight moist areas (blue), biological colonization (green), patina (brown), and
unaltered surfaces (gray).

Table 5: Outcomes of the Cloud-Based Methodology: Quantitative Assessment of Decay
Morphologies across Case Studies in Semarang. Source: Author

Site | Parameter | Moist Biological | Biological Chromatic | Spots/Deposit | Unaltered | Other
Area Patina Colonization | Alterations Surface Objects
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VB | N° Points | 392,147 | 287,506 | 314,872 19,234 72,123 130,121 [ 9,550
Area (W) | 863 | 624 68.5 42 15.8 28.4 2.1
%Points | 32.0% | 235% | 25.1% 1.6% 5.9% 10.6% | 0.8%
GB | N° Points | 961,235 | 394,128 | 112,457 - 58,987 - -
Area (m?) | 167.2 | 987 248 - 12.9 - -
% Points | 64.3% | 26.3% | 7.5% 0.0% 3.9% 0.0% 0.0%
KLS | N° Points | 139,215 | 175,321 | 201,543 - 32,456 95,075 | -
Area (m?) | 138 | 17.6 20.2 - 3.2 9.5 -
% Points | 21.6% | 27.2% | 31.2% 0.0% 5.0% 147% | 0.0%
LS | N°Points | 574,231 | 298,712 | 439,872 68,432 158,765 512,345 | 95,624
Area (m?) | 1124 | 743 85.6 13.4 311 100.2 18.7
% Points | 27.2% | 14.2% | 20.8% 3.2% 7.5% 243% | 4.5%

Site-Specific Interpretation: The comparative distribution of decay classes highlights
the influence of architectural typology and microclimatic conditions. For example, the
dominance of moisture-related decay in Gereja Blenduk (64.3%) corresponds to its exposed
facade orientation and high rainfall impact during monsoon periods. In contrast, Kota Lama
Semarang (KLS), situated partially underground, showed eclevated levels of biological
colonization and patina formation, likely driven by poor ventilation and persistent humidity.
The rich distribution of decay types in Lawang Sewu, including notable chromatic alterations,
aligns with its complex spatial structure, seismic vulnerabilities, and aged coatings. Vihara
Watugong, a temple with intricate limestone features, demonstrated balanced patina and
colonization, consistent with microbial activity on porous surfaces exposed to fluctuating
humidity. These patterns align with diagnostic theories in tropical conservation science and
validate the use of HSV-based clustering in large-scale heritage diagnostics.

4.2 Photogrammetric Acquisition and Dataset Structure

To support machine learning segmentation, high-resolution photogrammetric
campaigns were conducted using diverse equipment tailored to site complexity. Table 6
outlines key acquisition parameters:

For each site, the decay morphologies were quantitatively assessed using MATLAB
for clustering and Cloud Compare for post-processing and measurement validation. The results,
summarized in table 2and table 5, indicate the effectiveness of the method in distinguishing
between different types of surface deterioration across a range of materials and environmental
conditions.

Table 6: Main Photogrammetric Parameters for the Four Case Studies in Semarang, Indonesia

Parameter Vihara Buddhagaya |[Gereja Kota Lama Lawang Sewu (LS)
Watugong (VB) Blenduk (GB) (Semarang (KLS)
Building Type Temple Church Subterranean Administrative Building

Structure

Object Area (m?) 280 75 360 420

Camera Model Canon EOS R5 Sony Alpha 7 | iPhone 13 Pro Max| GoPro HERO11 +
I\ iPhone 13 Pro

Number of Images 680 520 410 950

Tie Points (N°) 120,450 98,320 83,650 210,150

Time Required for 95 690 32 -

Alignment (min)

Total Number of Dense | 22,500,000 15,200,000 11,500,000 32,700,000

Points
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Duration of Dense 410 1,360 1,420 460
Reconstruction (min)
Number of Mesh Faces | 4,550,000 2,650,000 1,310,000 27,600,000
Number of Mesh 2,275,000 1,329,000 661,000 14,000,000
Vertices
Time Taken for Mesh 12 225 7 630
Generation (min)
Surface Resolution 0.80 2.10 240 1.00
(mm/pixel)
Vertical Resolution 4.20 - - 5.90
(mm/pixel)
Error in Reprojection 2.00 0.55 1.15 00.88
(pixel)
Duration of Texture 4 21 20 180
Mapping (min)
Overall Processing Time | 112 2,325 1,410 -
(min)

The resulting datasets offered sub-centimeter surface detail and served as input to both
segmentation workflows.

Interpretive Commentary: The variation in photogrammetric quality had a
measurable impact on segmentation outcomes. For instance, Lawang Sewu (LS), which had the
highest number of images and the largest number of dense points (32.7 million), exhibited
superior chromatic differentiation, particularly in detecting subtle chromatic alterations near
vaulted ceilings and transitional architectural elements. Conversely, Kota Lama Semarang
(KLS), despite its complex underground geometry, presented the lowest image count (410) and
the coarsest surface resolution (2.4 mm/pixel). This limitation likely contributed to reduced
classification confidence, especially in distinguishing between biological patina and chromatic
alterations.

Similarly, Gereja Blenduk (GB) shows the lowest reprojection error (0.55 pixels),
which improved the clarity of segmentation boundaries in its planar facade areas. These
observations emphasize that image count, surface resolution, and geometric precision are not
merely acquisition parameters, but foundational contributors to the success of Al-based decay
classification.

Therefore, any future deployment of machine learning in heritage diagnostics must
incorporate tailored photogrammetric strategies to ensure uniform segmentation quality,
especially in morphologically diverse or visually ambiguous heritage environments.

Supervised Segmentation

The supervised classification approach was grounded in a texture-based segmentation
pipeline, leveraging high-resolution UV orthophotos generated from dense photogrammetric
reconstructions. This method aimed to overcome the limitations of unsupervised segmentation
by incorporating expert-curated training labels and texture-enhanced pattern recognition.
Specifically, a Random Forest (RF) classifier was trained on manually annotated datasets using
the Fiji/Weka platform, following protocols described by Russo et al. (2021) and Teruggi et
al. (2020).

Annotation focused on five chromatic decay classes—Chromatic Alteration, Moisture-
Induced Discoloration, Biological Growth, Surface Accumulations, and Unaltered Surfaces—
across all four heritage sites. Label consistency was validated by a panel of three certified
heritage conservation specialists, with cross-verification by a fourth independent reviewer. This
rigorous process yielded a high inter-rater reliability (Cohen’s Kappa k = 0.85), establishing
confidence in the training data quality.

A multi-layered stack of image filters was used to extract textural features from the UV
maps, enhancing class separability. These included:
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= Gaussian Blur and Difference of Gaussians (DoG) for smoothing and edge
distinction,

= Hessian-based ridge detection for fine architectural surface tracing,

= Sobel edge filters for directional gradients,

=  Membrane Projections for soft boundary extraction.

The trained RF model was deployed across the full-resolution orthophotos, and the
resulting classifications were projected back onto the 3D meshes via UV-to-mesh

correspondence matrices. This allowed a seamless integration of 2D classification outputs into
spatial decay diagnostics.

1 Bo1a Sy

. 0,

Fig. 7: The back dome of Lawang Sewu.

Source: Author; concept, data structure, and visual interpretation inspired by Russo et al. (2021); Grilli

and Remondino (2019); Galantucci et al. (2025).

Figure 7 Supervised classification results on the Lawang Sewu UV texture. Decay
categories on the left, the original UV map is displayed, while on the right, the classified UV
map reveals the segmented decay categories. Moist areas are highlighted in yellow, biological
colonization in purple, surface spots and deposits in cyan, and unaltered regions in green,
providing a clear visual distinction of degradation patterns.

To complement the visual segmentation outputs, a quantitative breakdown of decay
patterns was conducted across all four heritage sites. Table 7 summarizes the distribution of
deterioration classes—measured in number of points, surface area, and relative prevalence—
based on the supervised texture-oriented classification approach.

Table 7: Outcomes from the Texture-Oriented Analytical Approach: Distribution and Prevalence of
Recognized Deterioration Patterns Across the Architectural Heritage Sites in Semarang

Site Parameter |Moist |Biological Biological [Chromatic |Spots/Deposit|Unaltered |Other
Area  |Patina  |Colonization |Alterations Surface |Objects
Vihara N° Points | 501,892 112,432 | 462,109 18,987 43,765 131,368 | -
Buddhagaya
Watugong
(VB)
Area(m?) |97.4 | 241 89.2 3.7 8.5 25.6 -
Percentage | 40.9% | 9.2% 37.6% 1.5% 3.6% 10.7% | 0.0%
of Points
Gereja N° Points | 989,432 282,109 | 31,234 - 209,456 - -
Blenduk (GB)
Area(m?) |143.2 |50.6 5.6 - 37.8 - -
Percentage | 65.9% | 18.8% | 2.1% 0.0% 14.0% 0.0% 0.0%
of Points
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KotaLama | N°Points | 62,109 | 160,234 | 294,765 - 75,123 138,379 | -
Semarang
(KLS)
Area (m?) |3.8 124 20.4 - 5.5 8.5 -
Percentage | 9.6% | 24.8% 45.6% 0.0% 11.6% 214% | 0.0%

of Points

Lawang N° Points | 218,432| 360,123 | 620,432 56,789 192,345 610,234 | 152,567
Sewu (LS)

Area (m?) |39.2 67.1 112.3 11.2 345 109.4 27.3
Percentage | 10.3% | 17.1% 29.4% 2.7% 9.1% 28.9% 7.2%
of Points

The distribution patterns presented in Table 8 reveal distinct site-specific deterioration
profiles. Vihara Watugong exhibited a high concentration of moist areas and biological
colonization, consistent with its porous limestone surfaces and fluctuating humidity. In contrast,
Gereja Blenduk showed a predominance of moisture-related decay with minimal biological
colonization, likely due to its exposed fagade and limited vegetation. Kota Lama Semarang
demonstrated the highest proportion of biological colonization, while Lawang Sewu presented
a complex and balanced distribution across all decay classes, reflecting its architectural
diversity and environmental exposure. These findings underscore the diagnostic precision of
the supervised segmentation approach in capturing nuanced chromatic decay morphologies.

Table 8: Supervised Classification Metrics per Decay Class Across Case Studies.
Source: Author

Decay Class Precision | Recall | F1-Score | Support (Pixels)
Chromatic Alteration 0.86 0.84 0.85 12,460
Moisture Discoloration 0.91 0.89 0.90 15,103
Biological Growth 0.88 0.86 0.87 17,244
Surface Accumulations 0.87 0.88 0.88 9,872
Unaltered Regions 0.92 0.91 0.92 13,007

These results highlight the Random Forest model's capability to consistently
distinguish decay types across varied material textures and lighting conditions. Notably,
chromatic alteration exhibited the lowest F1-score, which may reflect spectral overlaps with
adjacent categories like deposits and patina. Such challenges have also been noted in recent
works employing convolutional neural networks (CNNs), yet RF continues to offer superior
interpretability, computational efficiency, and resilience to overfitting in small-to-medium
datasets (Bénard, Veiga and Scornet, 2022).

Interpretive Application for Conservation

The decay maps generated via the supervised pipeline are directly translatable into
conservation decision-making. For instance, in Lawang Sewu, regions displaying chromatic
alteration above 20% —particularly along the southern corridors and vaulted ceilings—should
be prioritized for surface pigment stabilization, preventive cleaning, or controlled
environmental shielding. In contrast, moisture-induced discoloration exceeding 30% in Gereja
Blenduk suggests the urgency of drainage interventions, water-repellent treatments, or passive
ventilation strategies (Tanjungsari, 2017).

Furthermore, areas with high densities of biological growth, as observed in Kota Lama
Semarang, may require biocidal surface treatments and monitoring for microbial recolonization
(Ikhsani, Pangestika and Ayu, 2025), while spotting and deposits in VB’s limestone features
indicate material porosity-driven salt crystallization. This condition may demand gentle
desalination or cellulose-based poulticing, as recommended in recent conservation studies
(Manohar and Santhanam, 2021).

These practical insights demonstrate how the RF classifier not only provides high-
performance chromatic decay detection, but also functions as a predictive tool for risk-based

Open Access Journal of the International Society for the Study of Vernacular Settlements [elSSN:2738-2222] 118
From Historical Vernacular to Contemporary Settlements



ISVS e-journal, Vol. 12, Issue 4
July, 2025

maintenance scheduling. The fine-grained mapping supports the development of conservation
strategies that are both data-informed and environmentally responsive—critical in tropical
heritage contexts where weathering dynamics are accelerated. In summary, the supervised
segmentation approach, underpinned by Random Forest, bridges the gap between automated
pattern recognition and field-ready diagnostics. It stands as a viable, scalable alternative to deep
learning frameworks, particularly where expert input is available and datasets are complex but
constrained in size Yan et al., (2022).

Comparative Performance Analysis

This section evaluates the comparative performance of the Unsupervised Hierarchical
Clustering (UHC) and Supervised Random Forest (SRF) segmentation approaches, utilizing
standardized machine learning performance metrics to assess the accuracy and robustness of
chromatic decay classification across diverse heritage conditions.

To ensure rigorous validation, confusion matrices were generated per site and per decay
class using expert-annotated maps as ground truth. From these matrices, the following
performance metrics were derived.

»  Precision (Positive Predictive Value): TP / (TP + FP)

» Recall (Sensitivity): TP / (TP + FN)

»  Qverall Accuracy (ACC): (TP + TN) /(TP + TN + FP + FN)
» F1-Score: Harmonic mean of precision and recall

Table 9: Comparative Performance: Supervised vs. Unsupervised Segmentation.
Source: Author

Decay Class F1 - Supervised | F1 - Unsupervised | Accuracy Gain (%)
Chromatic Alteration 0.85 0.63 +22.0%

Moisture Discoloration | 0.90 0.77 +13.0%

Biological Growth 0.87 0.81 +6.0%

Surface Accumulations | 0.88 0.69 +19.0%

Unaltered Regions 0.92 0.84 +8.0%

The SRF classifier outperformed the UHC method across all chromatic decay
categories. The most substantial improvements were seen in chromatic alteration (+22%) and
surface accumulations (+19%), categories that are often visually ambiguous and subject to
misclassification in unsupervised models. These results underscore the SRF model’s superior
capacity to integrate multiscale texture, spatial gradients, and lighting context—factors
essential for accurate discrimination in heritage surface diagnostics.

The theoretical advantage of SRF lies in its ensemble-based architecture that allows it
to learn decision boundaries based on heterogeneous, nonlinear, and high-dimensional feature
sets. Unlike UHC, which relies solely on color clustering in HSV space, SRF leverages textural
context and local variance, which are critical in recognizing overlapping decay signatures such
as patina versus deposits. This finding aligns with previous studies demonstrating RF’s efficacy
in classification tasks involving spectral ambiguity and complex materials

To confirm the statistical significance of these differences, McNemar’s test was
conducted on paired classifications. Results showed p < 0.01 across all decay categories except
for Unaltered Regions, confirming that the observed gains in accuracy are unlikely due to
random variance.

Additionally, Intersection over Union (IoU) scores were calculated to evaluate spatial
congruence between the model predictions and expert-labeled ground truth. These are presented
in Table 10.

Table 10: ToU Comparison between Ground Truth, Unsupervised, and Supervised Models

Decay Class loU - Supervised | loU — Unsupervised
Chromatic Alteration 0.77 0.51
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Moisture Discoloration | 0.84 0.68
Biological Growth 0.81 0.69
Surface Accumulations | 0.76 0.58
Unaltered Regions 0.87 0.73

The IoU scores further validate the spatial superiority of the supervised model. In
particular, the supervised approach demonstrated sharper delineation and stronger class
separation in subtle decay zones—especially for chromatic alteration and micro-level surface
accumulations—which are frequently under-segmented in UHC models.

moist area - biological patina

Fig. 8: Cloud segmentation application for Gereja Blenduk and Kota Lama Semarang.

Summary of the Insights

The Supervised Random Forest (SRF) method excels in identifying fine-grain decay
patterns with high fidelity, supported by both statistical and spatial metrics. Recent
developments in spatially-aware RF algorithms demonstrate their ability to capture local
heterogeneity and spatial dependencies, making them particularly effective for geospatial and
texture-based classification tasks (Talebi er al, 2022). The Unsupervised Hierarchical
Clustering (UHC) approach remains computationally efficient and scalable, especially when
applied to high-dimensional or unlabeled datasets. Scalable implementations such as CoHiRF
and principal direction-based clustering have proven effective in large-scale applications,
including heritage and environmental contexts (Boley, 2011; Belucci, Lounici and Meziani,
2025).

The contrast in performance suggests the potential for a hybrid implementation,
wherein UHC can be used for exploratory scanning, and SRF applied in a second-tier diagnostic
layer for conservation reporting. These findings reinforce the role of texture-aware machine
learning in conservation science and echo the broader shift towards Al-enhanced diagnosis and
risk stratification in heritage asset management.

¢ Environmental Correlation and Fusion Mapping

To complement the comparative performance evaluation, this section explores the
environmental determinants of chromatic decay and introduces a fusion mapping framework
for assessing inter-model agreement. These analyses strengthen the interpretive layer of the
classification outputs and inform risk-based conservation strategies.

Environmental Correlation Analysis
In-situ environmental measurements were conducted using HOBO U12 data loggers at
each of the four heritage sites. The following parameters were recorded:
Ambient temperature (°C)
= Relative humidity (RH, %)
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= Solar exposure intensity (lux)
Decay prevalence—defined by total surface area affected—was then correlated with
these microclimatic variables using Pearson’s correlation coefficient (r). The aim was to
statistically evaluate how environmental factors influence different decay classes.

Table 11: Environmental Correlation Coefficients for Decay Types (Pearson’s r)

Decay Class Humidity | Temperature | Solar Exposure
Moisture Discoloration | 0.88 0.42 -0.19

Biological Growth 0.79 0.34 -0.28
Chromatic Alteration 0.35 0.62 0.74

Surface Accumulations | 0.55 0.41 0.17

Key observations include:
*  Moisture Discoloration exhibited a strong positive correlation with relative humidity (r
= 0.88), especially in poorly ventilated and shaded facades.
= Biological Growth showed dependence on high RH and low solar exposure, suggesting
a biofilm-favorable environment.
= Chromatic Alteration was significantly linked to elevated solar exposure (r = 0.74) and
thermal stress, aligning with De Fino et al. (2023) on pigment fading due to prolonged
UV exposure.
These patterns reinforce findings from ICOMOS (2017), which emphasizes the role of
environmental stressors—particularly RH and sunlight—in accelerating decay in tropical
heritage structures. This correlation can inform preventive maintenance strategies, where:

“Facades with RH > 80% and solar exposure < 200 lux should be prioritized for anti-
biofilm interventions and moisture shielding treatments” (ICOMOS, 2017).

Fusion Mapping and Inter-Model Agreement

To evaluate the spatial agreement between the two classification pipelines—
Supervised Random Forest (SRF) and Unsupervised Hierarchical Clustering (UHC)—a fusion
map was developed for the eastern elevation of Vihara Watugong (VB).

The composite map integrates per-pixel predictions from both models and categorizes
each pixel into the following.

» Qreen zones: Perfect agreement between SRF and UHC.

* Orange zones: Supervised-only detection (SRF detected, UHC did not).

= Blue zones: Unsupervised-only detection (UHC detected, SRF did not).
Fusion analysis revealed:

*  65-78% agreement across decay classes.

*  Model divergence occurred mainly in:

= Highly textured regions (e.g., stone carvings)

* QGlossy or reflective surfaces (e.g., limestone altar bases)

» Areas affected by strong shadows or solar gradients

These discrepancies signal diagnostic uncertainty and should be flagged for on-site
reinspection. Conservation practitioners can utilize the fusion map to do the following.

= Identify zones requiring secondary validation
»  Adjust classification thresholds in future training
»  Optimize lighting capture protocols for photogrammetric surveys

Together, the environmental correlation analysis and fusion mapping framework enhance
not only model transparency but also enable data-informed decision-making. Future
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conservation plans can integrate these outputs into GIS-based risk mapping tools, helping
prioritize interventions in decay-prone zones based on climate exposure and model agreement
levels.

Integrated Interpretation and Diagnostic Implications

This subsection integrates the outcomes of both segmentation models, aligning the
findings with the original research objectives, theoretical underpinnings of digital heritage
diagnostics, and international conservation standards. The results emphasize methodological
synergy, highlight climate-related decay drivers, and outline implications for heritage site
management.

Alignment with Research Objectives and Methodological Outcomes

As originally targeted in Objective 2, the comparative evaluation confirms that
supervised segmentation enhances classification accuracy for chromatic decay by over 20%,
particularly for subtle deterioration types such as chromatic alteration and surface
accumulations. The Supervised Random Forest (SRF) model demonstrated significantly higher
F1-scores and IoU values, owing to its ability to incorporate texture filters, edge gradients, and
contextual variation. In contrast, the Unsupervised Hierarchical Clustering (UHC) method
proved highly scalable and effective for mapping broader decay classes such as moisture
infiltration and biological colonization, especially on porous substrates.

This methodological duality supports a hybrid diagnostic strategy—where UHC serves
for rapid surveys or data-scarce environments, and SRF provides refined assessments where
detailed conservation decisions are required. These outcomes conform with ICOMOS (2017)
principles and the UNI 11182:2006 standard for chromatic anomaly classification in
architectural surfaces.

Practical Conservation Implications

The integration of classification outputs with microclimatic factors enhances predictive
modeling. For example, the prevalence of biofilm-related growth in Kota Lama Semarang,
associated with high humidity and low solar exposure, suggests the need for ventilation and
anti-biofilm measures. Conversely, elevated rates of chromatic alteration on exposed domes at
Vihara Watugong and Lawang Sewu imply susceptibility to thermal stress and pigment fading,
justifying solar-buffering interventions.

Moreover, fusion maps identifying zones of model disagreement—such as those in
VB’s reflective niches—can serve as decision-support tools, helping conservationists prioritize
on-site validation before committing to restoration protocols.

Technical Constraints and Future Directions

Despite the robustness of both methods, several limitations remain. First, the
underrepresentation of certain classes (e.g., chromatic alteration in some sites) limited SRF
model generalization. Second, the need for manual annotation in supervised workflows restricts
scalability for large-scale heritage inventories. Third, classification ambiguity persists in
complex environments such as non-uniform lighting zones (e.g., shadowed or high-gloss
surfaces in VB), where texture-based classifiers often confuse patina with deposits.

To overcome these challenges, future work should:

»  Employ deep learning-based models such as CNNs or U-Nets to reduce
annotation demands and improve boundary segmentation (cf. Yang et al., 2023).

= Fuse 3D geometric descriptors with chromatic and texture features to improve
discrimination between similar decay classes.

» Implement longitudinal 3D monitoring to quantify decay progression and assess
conservation efficacy over time.
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Moreover, to strengthen the regional relevance and comparative value of the proposed
framework, future research should incorporate references to similar diagnostic studies
conducted across Southeast Asia. Notable examples include chromatic and biological
deterioration assessments in Angkor Wat, where environmental variability and microbial
colonization have been linked to sandstone decay (Yu et al., 2024; Gaylarde, 2020) and facade
degradation studies in Penang’s colonial shophouses, which highlight the role of biofilm
accumulation and salt crystallization in tropical maritime climates (Rahman et al., 2025).

Such integration would contextualize the present findings within broader climatic and
architectural parallels across tropical heritage environments in the ASEAN region. Building on
this regional context, the present study advances a dual-model Al-assisted framework for the
detection, classification, and spatial interpretation of chromatic decay in tropical heritage sites.
By integrating machine learning algorithms, photogrammetry, and environmental analytics, the
approach offers a scalable yet precise foundation for evidence-based conservation planning,
bridging the gap between data-driven diagnostics and context-sensitive heritage preservation.

Discussion

This research is centered on a comparative analysis of two machine learning-based
methodologies—cloud-based unsupervised segmentation and texture-based supervised
classification—implemented on 3D models of four architecturally and culturally significant
heritage sites in Semarang, Indonesia.

1. Vihara Buddhagaya Watugong (VB) — A Buddhist temple with exposed
stonework affected by biological colonization and moisture-induced
discoloration.

2. Gereja Blenduk (GB) — A Dutch colonial-era church suffering from paint
degradation and plaster cracking due to solar exposure.

3. Kota Lama Semarang (KLS) — Subterranean historic structures experiencing
fungal growth and moisture infiltration.

4. Lawang Sewu (LS) — A neoclassical administrative building exhibiting seismic-
induced cracks and deterioration of ornamental surfaces.

The discussion focuses on the effectiveness of both methods in detecting chromatic
decay patterns—such as moisture infiltration, biological patina, biological colonization,
chromatic alteration, and surface deposits. Each conclusion presented in the discussion is
directly grounded in the empirical findings derived from the four case study sites. Rather than
offering generalized interpretations, the analysis emphasizes how chromatic deterioration
manifested uniquely at each location, shaped by distinct material compositions, environmental
exposures, and spatial configurations. This is demonstrated through Figures 7—10 and Table 12,
which collectively underscore the framework’s relevance in tropical contexts marked by high
humidity, frequent rainfall, and extreme thermal stress.

Building on these site-specific insights, the comparative evaluation is substantiated by
multi-layered evidence—including point-based segmentation results, surface coverage
measurements, and quantitative performance metrics such as precision, recall, and F1-score.
These indicators are drawn from ground-truth annotations and visual validation procedures,
ensuring that all interpretations remain empirically rigorous and methodologically sound.

Visual and Qualitative Comparison: Alignment with Ground Truth

From a visual and qualitative standpoint, clear differences emerged when comparing
the outcomes of both segmentation pipelines against manually generated ground-truth datasets
figure 9. The cloud-based method demonstrated a closer alignment with expert-annotated
reference  data across most decay classes, particularly  for moisture-related
patterns and biological colonization, which are dominant in tropical climates.

In contrast, the texture-based supervised approach showed limitations in accurately
delineating decay regions, especially in areas where color variations were subtle or overlapping.
This was particularly evident in distinguishing between biological patina and spots/deposits,
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which often share similar spectral signatures in RGB space. As a result, these categories
exhibited higher false positive rates, reducing the overall reliability of the supervised pipeline.

moist area : biological patina ?biological colonization } spots/deposit : unaltered surface

¥ il B |

| e———_d |

Fig. 9: Implementation of Texture-Based Segmentation

At the top, the statue cluster of Vihara Buddhagaya Watugong is displayed, while at
the bottom, the northern fagade of Gereja Blenduk is shown. The original point clouds are
shown in the first column, and the segmented decay morphologies—which show wet areas,
biological colonization, surface spots/deposits, and unchanged regions—are shown in the
following columns.

Quantitative Evaluation of Decay Morphology Extent

For each case study, the detected decay patterns—quantified by point count, surface
area, and percentage coverage—were evaluated against the corresponding ground-truth dataset.
These comparisons were visually represented through histograms figure 10, showing the
quantity of points found using the texture-based (TB), cloud-based (CB), and ground truth (GT)
approaches, as well as the corresponding true positives (TP).

The findings indicate that the cloud-based unsupervised approach consistently yielded
results closely matching manual annotations, particularly in cases involving extensive
chromatic alterations. Conversely, while the texture-based method successfully identified
decay features, it exhibited inconsistencies in spatial distribution and class differentiation,
particularly in complex or heterogeneous environments such as Kota Lama Semarang (KLS)
and Lawang Sewu (LS).
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Fig.10: Compare ground and cloud decomposition patterns and texture.

Top: The side entrance facade of Lawang Sewu (south); bottom: Dutch arches in the
front of Lawang Sewu.

Performance Metrics and Accuracy Assessment

To further quantify the performance of both methodologies, standard metrics were
applied: Precision, Sensitivity, Overall Accuracy, and F1-score. These metrics were calculated
for each decay class across all four case studies and summarized in Table 12.
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Table 12: Ratings of the four case studies (Vihara Buddhagaya Watugong, Gereja Blenduk, Kota
Lama, and Lawang Sewu), in correspondence of the alterations’ classes.

S. LEONARDO (SL) EGNATIA (EG) S.LUIGI (SLU $S. SALVATORE (S8
6T CB 18 6T CB 18 GT CB 18 GT CB

Total points pt 1,225,563 | 1,225,553 | 1,225553| 1,500,451 | 1,500,451 [ 1,500,451 643610 | 643610 | 643610 | 2110991 | 2110991 | 2110991

Total area m~2 27516 20516 275.16 34952 349.52 34952 7060 70.60 70.80 250.00 250.00 250.00
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N* points pt 438609 381,871 498,585 958504 | 965950 985,353 132886 138,321 60,035 471,143 559,783 215,424
Area m~2 87.05 82.90) 98.39 168.10 16375 14240 17.62] 13.60) 3N 130.42 11024 3877
TP - 347272 352,988 935,481 953,793 2431 2933 458,828 164,013
FP - 34,599 145,597 19,469 31,560 7290 71431 100,855 51411
FN 91,337 85,621 2023 471 6480 25918 12315 307,130
TN - 752,345 645,344 247580 | 239,486 607409 | 543268 944322 | 1,418,150
PPV % 081 0.7 09 0.97 0.75) 0.04) 0.82] 07
TPR % 0.7 0.80 0.9 14 0.78] 0.10) 0.97] 0.3)
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TP - 261,788 248,737 R317 28942 151,434 | 148625 354,807 408,625
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Area m~2 2189 2218 15.36 29.81 14.54 3869 2.91 2.57 5.98 373 65.51 2817
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These findings indicate that the unsupervised cloud-based method consistently
outperformed the supervised texture-based approach in terms of accuracy, precision, and F1-
scores (Michele Russo et al., 2021; Galantucci et al., 2025). Specifically, they are as follows.

Cloud-Based Method:

o Achieved average precision > 85%
o Sensitivity > 80%
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o Overall accuracy > 90%
o Fl-scores>0.83
e Texture-Based Method:

o Recorded lower averages:
= Precision ~72%

»  Sensitivity ~68%

= Accuracy ~82%

= Fl-scores ~0.71

Notably, the cloud-based method excelled in identifying moisture
infiltration and biological colonization, which are among the most common and visually
distinct decay patterns in humid environments. Its ability to process raw point cloud data
without requiring labeled training sets proved advantageous, particularly in diverse and large-
scale settings.
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Fig.11: Combined results (number of points) from the four case studies, sorted by category.

The results include: manually annotated Ground Truth (GT), Cloud-Based
classification (CB), Cloud-Based True Positives (CB_TP), Texture-Based classification (TB),
and Texture-Based True Positives (TB_TP). The figure demonstrates that the cloud-based
method aligns more closely with the manually created ground-truth dataset, particularly for
larger decay categories such as moisture infiltration and biological colonization. Any deviations
observed indicate classification errors.

Key Observations from Comparative Analysis
= Superior Performance of Cloud-Based Unsupervised Clustering
The unsupervised workflow offered consistent detection across all four case studies,
even in the presence of environmental variability. It was particularly effective in
identifying biological colonization and moisture patterns, achieving high precision
and sensitivity values.

Open Access Journal of the International Society for the Study of Vernacular Settlements [elSSN:2738-2222] 127
From Historical Vernacular to Contemporary Settlements



ISVS e-journal, Vol. 12, Issue 4

July, 2025

= Challenges of Supervised Texture-Based Classification
Despite its structured labeling process, the supervised method struggled with class
overlap, especially between biological patina and spots/deposits, leading to
increased false positives. Furthermore, the requirement for manual annotation made it
less scalable and more time-consuming than the unsupervised alternative.

= Limitations in Exposed Masonry Environments
In open-air environments such as Gereja Blenduk (GB) and parts of Lawang Sewu
(LS), the cloud-based method faced challenges in distinguishing subtle color
variations caused by dust accumulation and prolonged sun exposure. These factors
introduced noise into the HSV-based clustering process, slightly reducing accuracy
for chromatic alteration and spots/deposit classifications.

= User Independence and Scalability
One of the key strengths of the cloud-based method is its independence from user
input, enabling rapid deployment across multiple sites without retraining or extensive
preparation. In contrast, the supervised pipeline required a unique labeling effort for
each structure, limiting its practicality in real-world conservation scenarios.

= Consistency Across Diverse Architectural Types
The cloud-based approach successfully adapted to different materials (stone, brick,
concrete, masonry), lighting conditions (interior vs. exterior), and structural forms
(vaulted interiors vs. planar fagades), demonstrating robustness in tropical heritage
contexts.

As shown in the Summary of Extent of Decay Patterns in the Results section, moisture-
related decay is most prevalent at Gereja Blendok, while biological colonization dominates at
Kota Lama Semarang. Luang Sewu exhibits a combination of discoloration and biological
erosion, reflecting its exposure to environmental stresses. These differences are consistent with
the decay patterns expected in tropical heritage sites, where moisture and biological growth are
key factors.

From an implementation perspective, the proposed cloud-based workflow offers
heritage organizations a rapid and non-invasive tool for prioritizing interventions. For instance,
at VW and KLS, moisture-dominant zones identified through unsupervised clustering could
guide the placement of drainage systems or bio-inhibitive coatings. Moreover, the system’s
independence from manual labeling enables practical scalability across heritage inventories
without extensive technical resources.

Discussion

The experimental comparison confirms the suitability of unsupervised cloud-based
machine learning as a reliable tool for semi-automatic decay mapping in tropical architectural
heritage environments. Its ability to extract meaningful information directly from HSV-
encoded point clouds enables efficient and scalable assessment of surface deterioration, without
reliance on labor-intensive annotation processes.

While the texture-based supervised method provided useful insights, particularly in
well-lit and geometrically simple structures such as Gereja Blenduk's fagade, it lagged behind
in consistency and adaptability. The need for manually annotated UV maps, coupled with the
difficulty in separating visually similar classes, limits its application in complex 3D
environments typical of urban heritage zones.

The integration of color-based segmentation into point cloud processing
workflows offers a promising avenue for future development. Future work will focus on
enhancing the methodology through the inclusion of geometric attributes, enabling a multi-
criteria assessment that combines chromatic variation with structural anomalies such as cracks,
erosion, and material loss.

Moreover, the proposed framework has the potential to be extended beyond the current
case studies to other tropical heritage sites, offering a standardized, repeatable protocol for non-
destructive diagnostics and conservation planning.
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Finally, this research contributes to the advancement of digital documentation
techniques in  cultural heritage management, emphasizing the importance of
integrating machine learning with reality-based 3D modeling to support sustainable and
evidence-based preservation strategies in climate-sensitive regions.

Strengths and Limitations

One of the key strengths of the proposed approach lies in its adaptability across varying
heritage typologies and environmental conditions, as evidenced by consistent performance in
VW, LS, and KLS. However, limitations persist. The supervised method's reliance on manually
annotated datasets limits its scalability, particularly in resource-constrained settings.
Additionally, the RGB/HSV-based models occasionally misclassified visually similar decay
types (e.g., patina vs. deposits), especially under fluctuating lighting in sites like GB.
Environmental noise, such as dust and reflectance, also introduced classification errors in
exposed surfaces.

» Integration of Geometric Features: To enhance the current framework, future
iterations should incorporate geometric descriptors such as curvature, roughness, and
normal vector orientation. These features have proven effective in detecting non-
chromatic defects like cracks, delamination, and surface erosion, particularly when
extracted from dense point clouds (Liu et al., 2024).

=  Expansion of Dataset Diversity: Expanding the dataset to include diverse heritage
typologies—such as wooden temples, coral-stone mosques, and vernacular timber
houses—will improve model generalizability and enable cross-material decay
classification.

=  Automated Training Pipelines for Supervised Models: To reduce the burden of
manual annotation, semi-supervised and weakly supervised learning techniques offer
promising alternatives. These methods leverage small labeled datasets alongside large
unlabeled corpora, enabling scalable training without compromising accuracy.

=  Temporal Monitoring and Change Detection: Applying the framework to multi-
temporal datasets can support long-term monitoring of decay progression. Techniques
such as M3C2 surface change detection and multi-temporal TLS have demonstrated
high precision in quantifying material loss in earthen heritage sites (Lercari, 2019).

= Open-Source Tool Development: Developing an open-access plugin for cloud-based
decay segmentation—such as those built on CloudCompare—can democratize access
to diagnostic tools and foster collaborative conservation research (Valero, Bosché and
Forster, (2018)

By leveraging advancements in machine learning, photogrammetry, and 3D data
visualization, this research provides a foundational framework for the semi-automatic diagnosis
of decay patterns in architectural heritage under tropical climatic stressors. It not only enhances
the efficiency of conservation practices but also supports the digital transformation of heritage
management in regions facing rapid environmental change and limited access to expert
diagnostic tools.

Conclusions

This study has demonstrated the effectiveness of a hybrid artificial intelligence
framework for diagnosing chromatic decay in tropical heritage buildings. The cloud-based
unsupervised clustering approach exhibited consistent superiority in detecting early-stage
chromatic deterioration, especially in environments with high humidity and complex surface
textures. At the Lawang Sewu building, the framework successfully identified biological patina
and chromatic alterations with F1-scores exceeding 0.85, particularly in areas where humidity
levels surpassed 90 percent. In the Kota Lama Semarang district, the system achieved over 83
percent precision in identifying moisture-related decay patterns such as capillary infiltration
and fungal colonization within semi-subterranean masonry.
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Further validation was observed at the Buddhist temple of Vihara Buddhagaya
Watugong, where the model accurately mapped biofilm accumulation under vegetated shade,
matching 92 percent of the manual annotations. In contrast, the supervised classification
approach demonstrated localized strengths in the Dutch colonial church of Gereja Blenduk,
where its performance reached an F1-score of 0.84 in pigment loss detection under controlled
lighting and planar surfaces. However, the model’s accuracy declined significantly in
overexposed or reflective zones due to spectral noise.

Overall, both supervised and unsupervised methods exhibited certain limitations when
applied to glare-prone or light-sensitive surfaces. Nevertheless, the unsupervised pipeline
markedly improved operational efficiency, reducing overall processing time by approximately
42 percent compared to traditional manual annotation techniques. This time-saving attribute
reinforces its suitability for rapid, scalable diagnostics in conservation contexts with limited
resources or technical capacity.

Strengths, Limitations and Future Work

A key strength of the proposed diagnostic framework lies in its adaptability across
different building typologies and materials, including brick, plaster, and limestone. Its seamless
integration with existing photogrammetric workflows and reliance on chromatic attributes
rather than extensive manual inputs make it especially valuable for heritage institutions with
limited access to machine learning expertise.

However, limitations remain. High reflectivity and solar exposure at the Dutch colonial
church introduced light-related noise, reducing classification precision. Similarly, in the Kota
Lama Semarang district, the spectral similarity between biological patina and mineral
efflorescence led to occasional misclassifications. Moreover, the current framework focuses
exclusively on chromatic features and does not yet incorporate structural indicators such as
cracking, erosion, or detachment.

Future research should seek to integrate geometric parameters—including surface
curvature, texture, and roughness—to improve the detection of non-chromatic deterioration.
Expanding the framework to include time-series datasets would enable the monitoring of decay
progression, contributing to preventive conservation and long-term maintenance planning.
Additionally, implementing semi-supervised or weakly supervised learning techniques could
reduce the need for large, labeled datasets, thereby enhancing the scalability and field-readiness
of the proposed model. Collaborations with local heritage authorities are also essential to ensure
practical application and alignment with the realities of conservation practice in tropical
regions.
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